
 

Investigation of motions in a central force field using the Dynamics Solver 

program – computer-aided experimental physics 

 

1. Introduction 

It is common experience that students’ level of knowledge, skills, and motivation in the field of 

science have all declined sharply in recent years. The reasons for this are manifold: on the one hand, 

there are fewer young people due to demographic decline; on the other hand, the standard of 

secondary education has declined noticeably; finally, the impact of the whole society turning away 

from natural sciences cannot be neglected either. It has become clear that a kind of paradigm shift is 

needed in science education, instead of the descriptive-explanatory methods an illustration-oriented 

approach should be applied, which can make physics education more enjoyable and successful. During 

curriculum development, the exact, field-specific sub-results should be simplified in such a way that 

the essence is retained, at the same time the details should be moulded into a whole with a unified 

approach and arousing interest. An important aspect is the inclusion of new, preferably practice-

oriented topics in education, as these can increase students' interest and show the extent to which 

physics plays a decisive role in everyday life. 

Computers have opened up a new dimension for physics as well, with the emergence of computer-

aided experimental physics as a completely new method of study. With the help of computer 

simulations, we can obtain relevant quantitative information about models that were previously not 

discussed at all or only qualitatively. Dynamics Solver (hereinafter DS) is a freely downloadable 

program [1], which is specifically designed to simulate dynamic systems. For the authors of the 

present study, its use has brought real breakthroughs in both education and research. 

The essential features of Dynamics Solver: 

 freely downloadable, 

 requires minimum programming knowledge to use, 

 characterised by high level of validity, strong reliability, 

 extremely fast, 

 amazingly flexible, almost any dynamic system model can be specified in it. 

Using DS does not assume any previous programming knowledge: all the information needed for the 

simulation is entered through user-friendly dialog boxes and the display and extraction of a wide range 

of graphical and numerical results is very simple. The program's powerful built-in compiler turns a 

wide range of standard-form mathematical expressions into outstandingly fast-running internal code. 

Because of the above, DS is a highly effective tool for studying dynamic systems. 

Models created in Dynamics Solver are saved as ASCII text problem files with *.ds extension by the 

program, so one could actually write them with a simple text editor, but of course the creation of the 

model is much more obvious and clear in the very user-friendly interface of the program. We created a 

brief overview for using the program in Hungarian [2] and English [3], but the most basic functions 

required to run the *.ds problem files related to this study are also listed here briefly: the  icon is 

used for running, the  icon is used for stopping (pausing), the  icon is used for continuing, the 

 icon is used for deleting the graphical windows, the  icon is used for displaying the parameter 

table and the  icon is used for displaying the initial conditions table. 

With the help of DS, students can understand the basic concepts and methods of dynamics almost by 

playing, and by using simulations they can experience the feeling of research and discovery. 



2. The central force field and the emerging forms of motion 

In the case of a so-called central force field, the potential energy determining the motion of an 

arbitrary point of mass depends only on the distance r measured from a given point (centre), so:  

 V r .  (2.1.a) 

In this case the force acting on the point of mass is 

dV r
F

dr r
  ,  (2.1.b) 

whose line of action always passes through a fixed point of the reference frame, the centre (in most 

cases we choose the origin O of our coordinate system here) (see Figure 1). 

 

Figure 1. Representing a central force field (a.: repulsive, b.: attractive force field) 

The most important central force fields - which are also the most common in nature - are those in 

which potential energy is inversely proportional to distance r: 

 V r
r


  , (2.2.a) 

where α > 0 for an attractive and α < 0 for a repulsive force field. From (2.1.b) force is proportional to 
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r
, where r is the distance: 

  2
F r

r


 . (2.2.b) 

The two most important, most well-known 1/r type central force fields are: 

 gravitational force (the force field of a body with mass M, under the condition M >> m): 

 G M m    , 

 Coulomb force (the force field of a body with mass M and charge Q, under the condition M >> 

m): 
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A brief theoretical discussion of motions resulting in the central force fields given by formulas (2.2) is 

given in the Appendix. In this section, we only highlight the most important results derived for the 

forms of motion. Essentially, the trajectory of the resulting motion is the conic section with equation: 
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 (2.3.a) 



(in polar coordinate system), whose parameters are 
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where E is the total mechanical energy of the body and J is the angular momentum (rotational 

momentum) defined by formula J m r v   . 

We have also concluded that the trajectory of a moving body of mass m will be closed (finite) or open 

(infinite) depending on the total mechanical energy E of the body. 

 

2.1. Closed trajectories (orbits) 

In the case of 0E  the body with mass m moves on an elliptical trajectory with parameter p and 

eccentricity e, for which: 

 the major and minor axes of the ellipse are 
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 and the orbital period is   
3

2
p

m
T

E
 .    (2.4.b) 

 

(a) Gravitational field (planetary motion, Kepler’s laws) 

In the gravitational force field of a body with mass M (  G M m    ), using formulas (2.4): 
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 which is Kepler’s 3rd law, and the appearance of the elliptical trajectory itself is Kepler’s 1st law. In 

Appendix F.1 we show that in a central force field angular momentum is constant, so the area swept 

out by a point of mass moving in a central force field in a unit time,  

1

2
x yT v y v x      (2.6) 

is constant. This is Kepler’s 2nd law: the line joining a planet with the Sun sweeps out equal areas in 

equal time intervals. 

(Remark: in the case of 0e  , that is, in the case of an energy value 
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so the trajectory is a circle. 

 

(b) Electrostatic field (electron orbits, Bohr-Sommerfeld model) 

In the quasi classical quantum theory, according to the Bohr-Sommerfeld model describing the 

structure of atoms, negatively charged electrons are located in elliptical orbits around a positively 



charged nucleus, so they essentially form a tiny solar system. In this case, instead of gravitational 

force electrostatic Coulomb force acts (attractive in the case of opposite charges) and 
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The full physical state of all electrons in an atom can be described by four quantum numbers. 

The principal quantum number n (n = 1, 2, 3, …) describes the size (the average distance of the 

electron from the nucleus) and the energy of the orbit, while the azimuthal quantum number l 

(l = 0, 1, 2, 3, …, n-1) describes the shape and the angular momentum of the orbit (see Figure 2). We 

now know that this picture is not realistic, but within a given framework it is very successful (e.g. in 

the description of chemical properties) and, above all, very illustrative. 

 

Figure 2. Electron orbits in the Bohr-Sommerfeld atom model 

 

2.2. Open orbits 

In the case of 0E   the body moves on an open (infinite) hyperbolic trajectory (in the special case 

of 0E   the trajectory is a parabola). 

A more detailed discussion is given in Appendix F.2, here we summarize only the most important 

practical examples. 

2.2.a. Deflection in a central gravitational force field 

Figure 3 shows the hyperbolic trajectory of a body moving in an attractive central force field, the body 

with mass m moving at an initial speed v0 at a large distance from the centre of attraction would pass at 

distance D from the object with mass M (M >> m), if it was not deflected by the gravitational field of 

the centre of attraction. 

 

Figure 3. Deflection of trajectory in a central gravitational force field 



Thus, in the gravitational force field of mass M, it is deflected by angle δ moving in a hyperbolic orbit. 

The hyperbola has two non-intersecting and non-touching arms, the trajectory of the body being the 

hyperbola arm closer to the centre of attraction. As the distance from the axis of symmetry increases 

beyond all limits, the two ends of the hyperbola arm approach two straight lines called asymptotes, the 

deflection δ is the angle enclosed by the two asymptotes. 

According to the formula (F.2.8) obtained through purely classical physical derivation 
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2.2.b. Particle scattering 

The scattering of an electrically charged particle on an electromagnetic force centre or on another 

charged particle is called Coulomb scattering. It was first investigated experimentally by Rutherford 

by scattering alpha particles on gold nuclei, called Rutherford’s scattering experiment (Figure 4). 

 

Figure 4. Rutherford scattering 

2.2.c. Deflection of light 

In modern physics (quantum theory and relativity), light is also considered to be a material object with 

mass, so perhaps the most important application of our considerations – also of outstanding history of 

science importance - is the deflection of light when passing near a massive body (e.g. the Sun). 

Unfortunately, classical physics becomes inaccurate at high speeds, so in this case we have to rely on 

the theory of relativity, which results in a relativistic angular deflection being twice the value given by 

the classical formula (see Appendix F.2): 
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The deflection of light close to the Sun provided the first experimental evidence to prove general 

relativity. In 1919, utilizing a solar eclipse, English astronomer A. Eddington measured the deflection 

of light from stars near the Sun (while moving towards the Earth their light passes close to the Sun) 

and the results of the measurement clearly matched the relativistic formula (see Table 1). 



  deflection of light close to the Sun  

(arcseconds) 

calculated based on 

classical physics 
0.87 

calculated based on the 

theory of relativity 
1.75 

measured (Eddington) 1.74±0.03 

 

Table 1. Deflection of light close to the Sun 

 

3. Simulations – computer-aided experimental physics 

The exercises discussed in this chapter offer the experience of real computer-aided experimental 

physics, the joy of personal “discovery”, so it is worth experimenting with your own attempts, it is 

worth the time dedicated to it. Therefore, we recommend that you try to find your own solutions to the 

following exercises, but we provide some help in Appendix F.3. 

Remark: the problem of central force field also can be simulated in Excel, see for example  on page 

http://theorphys.elte.hu/fiztan/num/ using Euler method.. 

In the following exercises, study the numerical simulation of motions resulting in a gravitational force 

field with  G M m    by running problem file grav_sim.ds, which can be found in folder DS. 

 

If you would like to understand the operation of the simulation in detail, then check the structure of the 

problem file (following the help mentioned in the Introduction through menu items Type…, 

Variables…, Parameters…, Equations…, Initial conditions… and Range… in the Edit menu). This is 

absolutely not necessary; you can experiment with the simulation program using the basic functions 

described at the end of the Introduction. 

 

 

Figure 5. The coordinate system and parameters used in the simulation 

http://theorphys.elte.hu/fiztan/num/


By placing the origin of the (Cartesian) coordinate system in the centre of the force field, four 

parameters determine the motion: 

 parameter GM determining the strength of the force field (which in the case of gravitational 

force field is  GM G M  ), 

 and the initial conditions, that is, the initial position  0 0_  ;   x x ini y D  given by 

parameters x_ini and D, and the initial velocity vector  0 0 0 0_  ;  0   x yv u u ini v v  – 

that is, parallel to the x axis – given by parameter u_ini (the general nature of the motion is not 

limited by taking the initial velocity to be parallel to the x-axis). 

We defined a graphical window and a text data display window as output. In the graphical window, 

the trajectory is drawn in the x-y plane. In the text window, the directional angle of the instantaneous 

velocity (the angle enclosed by the velocity vector and the x-axis) and the magnitude of the area swept 

out by the position vector pointing from the origin to the current position per unit time are displayed 

(see Appendix F.1). 

 

Exercise 1. 

Perform computer-aided experimental physics: by changing the value of the above four parameters try 

to find a hyperbolic trajectory (“comet”) and an elliptical trajectory (“planet”). (If required, change the 

settings of the graphical display window in the dialog window in menu item Graphics format… in the 

Output menu as described in the guide.) 

What do you experience if you choose a negative value for the GM parameter, so you have a 

“repulsive” central force field? 

 

Exercise 2. 

If you could find a hyperbolic trajectory, then you can see in the text window that the bearing angle 

starts at 0 radians, which corresponds to the initial velocity in the x direction chosen by us (this is 

actually the starting asymptote of the hyperbolic trajectory), and after a sufficiently long time the 

bearing angle converges to a non-zero value (this is the direction of the other asymptote of the 

hyperbolic trajectory). This bearing angle is equal to the angle of deflection δ determined in the 

theoretical description.  

Experiment with the simulation to determine how the angle of deflection δ depends on the parameters. 

Always change only one of parameters GM, D and u_ini systematically (the x_ini parameter is not 

relevant, but it should be chosen large enough to have the starting point on the input asymptote) to 

show that the angle of deflection δ is directly proportional to GM, inversely proportional to D and the 

square of u_ini, so prove formula (2.7) experimentally. (Of course, the classical physical approach is 

valid, since in the simulation the equations of motion (F.2.3) based on Newton's 2nd axiom are used.) 

 

Exercise 3. 

In Exercise 1 you found that in the case of the (attractive) central force field, elliptical trajectories can 

appear at appropriate parameter values. By placing the Sun in the centre of the force field, you can 

essentially simulate the motion of the planets! 400 years ago, Johannes Kepler studied the motion of 

the planets of the Solar System with the help of a fantastic new invention, the telescope, and with 

tremendous work, systematic and accurate data collection, he condensed his observations into three 

wonderful laws: 



I. The orbit of a planet is an ellipse with the Sun at one of the foci. 

II. The line segment joining a planet and the Sun sweeps 

out equal areas in equal time intervals. 

III. The square of a planet’s orbital period (T) is 

proportional to the cube of the semi-major axis (a) of the 

elliptical orbit, that is: 

3

2

a
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T
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
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(The parameters are defined by formulas (2.4)) 

Kepler's laws are also discussed theoretically in 

Chapter 2 and in the Appendix, now study the motions 

formed in closed orbits by computer simulation, so prove 

Kepler's laws given above experimentally. 

 

Exercise 4. 

In this exercise study the numerical simulation of motions created in the 
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electrostatic force field by running problem file Rutherford_sim.ds located in folder DS. The 

coordinate system and the parameters used are the same as in simulation grav_sim.ds, the only 

differences are that this time the strength of the centre is given by parameter α instead of GM and that 

we do not start a single point of mass from a single initial position with distance x_ini but a beam of 

200 particles spread out uniformly in the y-interval between –D and +D similarly to Rutherford’s 

scattering experiment. 

Change the parameters and observe the nature of the particle scattering. 

  

 

Figure 6. Parameters of the ellipse of a 

planetary motion 



Appendix 

F.1. Angular momentum in the central force field 

The vector product (cross product) of vectors  , ,r x y z  and  , ,x y zv v v v  given with Cartesian base 

vectors (right-twist orthogonal unit vectors)  , ,i j k  in three dimensions is defined as 

     z y x z y x

x y z

i j k

r v x y z i y v z v j z v x v k x v y v

v v v

 
 

              
 
 

 (F.1.1) 

The geometric interpretation of the vector product: the area of the parallelogram defined by the two 

vectors is equal to the magnitude of their vector product (Figure 7), so sinT r v r v      . It 

follows from the definition, but clearly from the latter interpretation, that the vector product of parallel 

vectors  sin 0   is zero. 

 

Figure 7. The geometric interpretation of the vector product 
 

Vector product has several important uses, a physical application is discussed below. In classical 

physics, angular momentum (rotational momentum) is a vector quantity characterising the state of 

rotation of a body. The angular momentum of a point mass with mass m, instantaneous velocity v  for 

a given point is  

J m r v   . (F.1.2.) 

Let us investigate the temporal change of the angular momentum, that is, its derivative with respect to 

time, which according to the differentiation rule of the product function is 

 
d d dr dv

J m r v m v r
dt dt dt dt

 
        

 
, 

as by definition 
dr

v
dt

 , 
dv

a
dt

 : 

   
d d

J m r v m v v r a
dt dt

        . 

As the vector product of parallel vectors is zero, the first term in the parenthesis above is zero, since v  

is obviously parallel to itself, and in a central force field force is parallel to the position vector r  (see 

(2.1.b)), so the instantaneous acceleration a  of the body with mass m is also parallel to position vector 

r , so: 

0
d

J
dt

 , that is, J constant . 



Thus, we have obtained that the angular momentum of a point mass moving in a central force field is 

constant! 

Now, let us consider the area swept out by a point mass moving in a central force field per unit time, 

T  (e.g., a planet orbiting the Sun) (see Figure 8). If one of the vectors – in the angular momentum 

velocity v  – stands for the displacement in a unit time, then vector product r v  gives the area in a 

unit time, so the magnitude of the area “swept” by the position vector r  in a unit time is given by the 

area of the triangle determined by the two vectors (see the figure), which is half of the area of the 

parallelogram determined by the two vectors, so 
1

2
T r v   and its unit is 

2m
s

. 

 

Figure 8. The area swept out by the position vector of a point mass moving in a central force field per 

unit time 

Based on the above formulas, the swept area can be written using the angular momentum: 
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m
   . 

As we have shown that in a central force field angular momentum is constant, we have come to the 

conclusion that the area swept out by a point of mass moving in the central force field per unit time, T  

is constant. (This is Kepler’s 2nd law: The line segment joining a planet and the Sun sweeps out equal 

areas in equal time intervals.) 

If the plane of the orbit is in the x-y plane of the coordinate system (z = 0), then  , ,0r x y  and 

 , ,0x yv v v , so their vector product is 
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, 

so the magnitude of the area swept out per unit time is 

1

2
x yT v y v x    . (F.2.3.) 

 

F.2. Motion of a point of mass in a central force field with potential 1/r 

Let us consider a body with mass m moving in the central force field of a large body with mass M  

(M >> m), which is characterised by potential 



 V r
r


   (F.2.1.) 

(if α > 0, the field is attractive, if α < 0, the field is repulsive). 

Then the force is 

2
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
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Thus, according to Newton's 2nd axiom the equation of motion of a body with mass m is 
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from which the acceleration vector in the x-y plane of the trajectory is 
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A detailed discussion can be found in Sections 14. and 15. of [4], here only the essential steps are 

reviewed. 

It is useful to introduce the so-called effective potential 
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(see Figure 9.), where J is the angular momentum discussed in the previous section. 

 

Figure 9. The effective potential as a function of distance 

Switching from the x-y Cartesian coordinate system to the r-φ polar coordinate system and performing 

the elementary integral in the equation of motion, we get that: 
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where 
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 (F.2.5.a) is the equation of a conic section whose focus is at the origin, p is the parameter of the 

trajectory and e is its eccentricity. 

It depends on the total mechanical energy   21

2
 effE V r mv  of the moving body with mass m 

whether the orbit is closed (finite) or open (infinite) (see the figure above). As the kinetic energy, 
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mv  is trivially non-negative, motion can occur only in the range r where   effE V r  is true. 

First consider the case when 0E  , 

 then the body moves in a (closed) elliptical orbit (Kepler’s 1st law), 

 the major and minor axes of the ellipse are: 
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 the orbital period is 
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 based on (F.2.6.a) and (F.2.6.b)  
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 (in the case e = 0, that is, energy 
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
   , a = b = p, so the orbit is a circle). 

 (Reminder: Kepler’s 2nd law was derived in Appendix F.1.) 

In the case of 0E   the body moves on an infinite (open) hyperbolic path (in the case of 0E  the 

orbit is a parabola). 

Let us investigate the case E > 0 in more detail, when a body of mass m with velocity v0 (this is the 

“initial” velocity when it is still very far from the centre of force) would move along a straight line at 

distance D from an object of mass M (M >> m) (if it was not affected by gravitation). In the 

gravitational force field of mass M, the body moves in a hyperbolic trajectory and deflects through 

angle δ. The hyperbola has two non-intersecting and non-touching arms, the trajectory of the body is 

the hyperbola arm closer to the centre of attraction. As the distance from the axis of symmetry 

increases beyond all limits, the two ends of the hyperbola arms approach two lines called asymptotes, 

the deflection δ is the angle enclosed by the two asymptotes. Let us determine angle δ. 

 

Figure 10. Deflection of a body moving in a hyperbolic trajectory in an attractive central force field of 

nature 1/r 



 

Let us consider the factors affecting the deflection, first simply on the basis of units of measurement 

(dimensional considerations), then based on classical physical description, and finally based on the 

theory of relativity. 

a. Dimensional consideration: 

Let us take into account the physical factors that could affect deflection δ: 

• mass M of the object being the source of the central force field (its SI unit is kg), 

• the (Cavendish) gravitational constant G (its SI unit is 

3

2

m

kg s
), 

• velocity v0 (its SI unit is 
m

s
), 

• distance D (its SI unit is m). 

Let us mix the units of the above four quantities to obtain a dimensionless (radian) δ plane angle unit; 

we conclude very quickly that 
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  (F.2.7.) 

Of course, the reciprocal of the above expression would also be suitable dimensionally, but it would 

contradict basic physical requirements, e.g. that the deflection should be proportional to the strength of 

the centre (the product of mass M and the gravitational constant G) and inversely proportional to the 

distance D and the initial velocity v0, which corresponds to our image of the process. 

 

b. Classical physics: 

Using classical physical calculation, for a point mass with mass m moving in a central force field with 

potential (2.2.a) (α > 0 attractive, α < 0 repulsive nature) at velocity v0 (at a great distance from the 

centre) and distance D from the centre, (through derivation not detailed here, see e.g. [4] I. Sections 

14, 15, 18 and 19, based on formula (19,1)) we get that the deflection δ is 
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The approximation polynomial of the cotangent function (Taylor series to first order) is 
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Reorganising and using that fact that for gravitational potential G m M     we obtain that 
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  (F.2.8.) 



So according to classical (Newtonian) physics, the angular deflection is really proportional to the 

expression obtained through dimensional analysis, exactly twice that! 

 

b. Theory of relativity: 

Special relativity is based on two postulates. One is the principle of relativity, which states that natural 

processes happen in the same way when observed from any inertial reference frame and the form of 

the laws describing them is the same in any two inertial reference frames. The other postulate makes 

the surprising statement that the speed of light in vacuum is the same for any observer, 

8

0 3 10  mc
s

  . The value of a given physical quantity measured in one or another reference frame 

may be different, but these can be determined from each other clearly using the so-called Lorentz 

transformation, which characterises the relative motion of the reference frames, there is no separate 

absolute space and time, Lorentz transformation is essentially a geometric transformation in the 4-

dimensional space-time. 

The general theory of relativity merges special relativity with Newton's universal law of gravitation, 

describing gravitation as a geometric property of space-time. The general theory of relativity is based 

on the principle of equivalence, which states that a local gravitational effect corresponds to the effect 

of an acceleration observed in a gravitation-free spatial reference frame accelerating in space, and 

(also locally) the two cannot be distinguished. This is not a priori truth, but a statement based on 

empirical observations (e.g., Eötvös pendulum) to verify the equivalence of inertial and gravitational 

mass. 

Based on calculations not detailed here (see e.g. [5] [6]) we obtain that in a local (non-inertial) 

reference frame at distance r from a body with mass M, the speed of light is 
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.  (F.2.9.) 

From here, we can move on with completely classical physical considerations. Let us use the 

(absolute) refractive index 0c
n

c
  known from optics in a medium where the speed of propagation of 

light is c ( 0c c ), which now, based on (F.2.9.) is: 
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, (F.2.10.) 

where the first order of the Taylor series is used for approximation. (F.2.10.) essentially means a beam 

of light travelling in an inhomogeneous optical medium. Such problem is widely discussed in classical 

optics [7] (e.g. in the case of the mirage phenomenon), the resulting angular deflection is 

2b

D
  , 

which in this case, using (F.2.10.) is 
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


   (F.2.11.). 

It is not the same as formula (F.2.8.), which was derived using purely classical physics: the relativistic 

result is exactly twice the angular deflection obtained from classical physics. 

 

F.3. Help for the exercises set 

If you feel that you do not succeed in solving the exercises set on your own, some help is provided 

below. 

Exercise 1. 

A hyperbolic trajectory (“deflection”, “comet”) appears for example with parameter values GM = 20 , 

u_ini = 4 , x_ini = -20 , D = 3. 

An elliptical trajectory (“planet”) appears for example with the parameter values below (trajectories 

are shown in Figure 11.): 

 GM = 20 , u_ini = 2 , x_ini = -5 , D = 3  (blue, elongated), 

 GM = 20 , u_ini = 3 , x_ini = -1 , D = 3  (black, less elongated), 

 GM = 20 , u_ini = 2 , x_ini = -2 , D = 6  (green, almost circular), 

 GM = 20 , u_ini = 2 , x_ini = 0 , D = 5  (red, circular), 

 

Figure 11. Elliptical trajectories in the DS simulation 

If you choose a negative value for the GM parameter, so you have a “repulsive” central force field, 

then it is clear that only hyperbolic trajectories can appear. 

 

Exercise 2. 

Changing only one of parameters GM, D and u_ini systematically, we record the change in the angle 

of deflection δ. (parameter x_ini is irrelevant, for example we can set the value x_ini = -20). 

(a) investigating the dependence on mass: (GM=... , u_ini = 4 , D = 3) 

 GM  angle δ [rad] 

 1 0.0416 

 2 0.0833 
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 3 0.1253 

 4 0.1674 

 5 0.2097 

From the above data it can be concluded that the angle of deflection δ is directly proportional to 

parameter GM. 

 

(b) investigating the dependence on distance: (GM = 2 , u_ini = 4 , D =...) 

 D angle δ [rad] 

 1 0.250104 

 2 0.125307 

 3 0.0833402 

 4 0.0622552 

From the above data it can be concluded that the angle of deflection δ is inversely proportional to 

parameter D. 

 

(c) investigating the dependence on initial velocity: (GM=1 , u_ini=... , D=3) 

u_ini angle δ [rad] 

   1 0.671469 

   2 0.167432 

   3 0.0740379 

   4 0.0415587 

From the above data it can be concluded that the angle of deflection δ is inversely proportional to the 

square of parameter u_ini. 

 

Combining the above three findings into a single relationship we obtain that 

2_
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GM

D u ini
, 

more precisely, we obtain 
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GM

D u ini
 

which is identical to formula (2.7) obtained through classical physical derivation, so we have verified 

it experimentally, “empirically”. 

 

Exercise 3. 

The truth of the 1st law can be verified easily visually by running the simulation, since elliptical 

trajectories appear. A handy feature of DS is that the coordinates of the current position of the 

crosshair moved with the mouse in the graphics window can be seen in the status bar at the bottom of 



the screen. One of the focal points of the ellipse is the origin, as we put the centre of the force field 

there. 

How could we find the other focal point of the ellipse? 

Once the two focal points are found, we can use the definition of the ellipse to verify the elliptic 

character, according to which the ellipse is the locus of points in plane whose sum of distances from 

the two focal points is constant. 

 

We got the possibility of verifying the 2nd law at the end of the interpretation of the vector product 

described above, according to which it is the size of the area swept out per unit time,  

1

2
T u y v x    , whose value is calculated and printed out in the text data window in each time 

step. During the run, we can see that the written value is constant in time, so we have verified the law 

“experimentally”. 

 

In order to verify the 3rd law, run the simulation for a force field with a set GM parameter with 

different x_ini, D and v_ini initial conditions, that is, draw elliptical trajectories in the given force field 

(the orbits of different “planets” for a given “Sun”). For each setting, try to determine the length of the 

semimajor axis a of the resulting ellipse and the orbital period T empirically. 

To estimate the value of a, use the crosshair coordinate display by reading the coordinates of the two 

furthest points of the ellipse, calculate their distance using Pythagoras' theorem, and the value of a is 

half of that distance. 

To estimate the orbital period T, use the First value and Last value settings in the Range… submenu 

dialog of the Edit menu, e.g. set an arbitrary value for First value, then change the value of Last value 

until the drawn trajectory closes (Fig. 12), then the difference between the first value and the last value 

is the orbital period. 

 

Figure 12. Determining the orbital period T “experimentally” in the simulation (T = 35.5) 

Based on the “measured” a and T values it is clearly seen that 
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Thus, we have verified Kepler’s laws “experimentally”, empirically. 



 

Exercise 4. 

The typical graphical display of the simulations obtained by running the Rutherford_sim.ds problem 

file is shown in the figure below. 

 

Figure 13. Scattering pattern obtained through DS simulation 

The scattering pattern obtained corresponds to the pictures given in literature. By changing the 

parameters, the angular distribution changes visibly, that is, the properties of the scattering centre can 

be deduced from the exact image, which is the essential (Nobel Prize winning) result of Rutherford's 

measurement. 
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