
Investigation the chaotic properties of the Duffing-oscillator with Dynamics 

Solver 
 

The electronic materials can be downloaded from [4]. 

If you wish to study any real object, you must notice that it will have such a great number of 

properties, which is way beyond our capacity to take into account and describe to the full extent. 

This is why real objects are ‘stripped naked’, in other words only characteristics important for the 

purposes of the study are retained and only the laws of mathematics describing the relationship 

between the quantities specifying these so called relevant properties are identified. The set or 

correlations obtained this way, when taken together, are called the mathematical model of the object 

in question. The goal is usually to look for the time dependence of the relevant state variables of the 

system. A special significance is given in such a description to the rate of change of certain state 

variables over time. 

 

NOTE! If you are bothered by the too complicated mathematical notions and signs, you can safely 

use the reading throughout the discussions which follow here: wherever you can see in a formula 

something like y , or 
dy

dt
, read as “rate of change of y over time” (for instance, formula (2) can be 

read as “the rate of change of the speed v over time is a which stands for acceleration”). You will 

see that all equations of motion providing the development of a system over time can be brought to 

a form where “the rate of change of a quantity over time” stands on the left hand side of the 

equation and a mathematical expression specifying this rate of change can be found on the right 

hand side of the formula. It is very important to highlight that it is sufficient to enter only the 

mathematical expressions on the right hand side to any numeric computer programme calculating 

the changes over time of any system, that is the reading suggested here is not only sufficiently 

precise but also the most practical way possible! 

 

Let’s try to provide an exact mathematical definition to the rate of change over time! Let’s see the 

quantity y, with a time dependence specified by the function y(t). Mark the changes in the value of y 

during a given short period of time Δt by Δy. The rate of change – very apparently – will be 

specified by the “change velocity” 
y

t




, which is called in maths as the differential quotient. It is 

also clear that the momentary value of the change will be provided by the differential quotient the 

more precisely, the shorter Δt period of time is taken into consideration. Extremely short (so-called 

infinitesimal) periods of time in maths are marked as dt, the change of y during this time is dy. 

Using these variables, the momentary rate of change 
dy

dt
, also called differential quotient and is 

also indicated as 
dy

y
dt

 . 

 

The process of model creation is presented below through the example of a real mechanic system 

which can be discussed in possession of relatively simple, basic level knowledge of physics: the 

motion of a body oscillating along a straight line with a mass of m will be studied. The outline of 

the mechanic system can be found on Figure 1 below.  



 
Figure 1: the schematic representation of the mechanic system tested 

 

The car rolling on a horizontally laid pair of rails is jerked using an eccentric disk. A pair of 

horizontally laid rails is fastened on the car itself, with a body having a mass of m on it, moving 

easily on the rails. The left side end of the body is fixed to the front wall of the car using an 

untensioned spring, and the right side end of the body is fixed to the rear wall using a piston moving 

in a hydraulic cylinder. The line of the rail is considered hereinafter as the x axis of the coordinate 

system and the location of the centre of mass of the body under untensioned conditions on the rails 

will be denoted as x = 0 point, in other words the origin of coordinates (and, with it the coordinate 

system itself) will be fixed to the car. 

 

It is clear that the centre of mass of the body will carry out a uniform rectilinear motion in the 

proximity of the x = 0 point, and this is the motion we intend to describe. One of the relevant state 

variable in the system is obviously the displacement of the body relative to x (the origin of the 

coordinates), the momentary value of which is specified using the function x(t). The precise 

mathematical specification of the change over time in the displacement x(t) shall be the velocity 

defined by the differential quotient: 

 ' rate of change of  over time'   
dx

x x v
dt

. (1) 

Speed, hence, is in fact nothing else but the ‘rate of change’ defined as the quotient of dx 

displacement during dt time and dt time. 

 

Apparently, the speed marked v(t) of the body in question may also change over time. Stepping one 

more step further mentally, acceleration, which provides the rate of change of the v(t) function of 

speed can be defined the same way as it happened in the case (1): 

 ' rate of change of  over time'   
dv

v v a
dt

. (2) 

 

Let’s try to think it over what kind of information will you need to calculate the change over time in 

a mechanic system! Take a body with the mass m moving along a straight line as an example. If you 

know the x(t) coordinate and v(t) velocity of the body at the moment t, its subsequent coordinate 

after the lapse of an (“appropriately”) small t  time can be calculated in the form 

     x t t x t v t t     (the calculation will be the more accurate the less t is). Well, yes, 

but what will be the velocity at this point? You can obtain this value with the formula 

     v t t v t a t t     which is analogue to the former one, provided the acceleration a(t) 

of the body at the moment t is known. Acceleration a of a body, then, will be proportional to the 

resultant force of the forces it is exposed to, as the Second Law of Newton postulated: 

  m a F ,  

which, using he definition (2) will be (in one dimension): 
 



 
1

v a F
m

   , (3) 

 

It turns out from the line of thought referred to above that you will need to know the x0 = x(t) initial 

position and the v0 = v(t) initial velocity in order to be able to start the calculation. 

 

The general dynamic model, the so-called Duffing-oscillator of the body carrying out oscillating 

motion in the system depicted on Figure 1 will be built up below in four steps, so that the dynamic 

effects featured on the right hand side of the equation (3) are expanded on a step by step basis: 

(1) linear spring force, 

(2) taking into account the friction (viscous) force impeding the motion, 

(3) expanding non linear spring force, 

(4) adding a periodical external exciting force. 

 

(1) Linear spring force 

The size of the spring force shall be proportional with the momentary displacement of the body (in 

fact, with the stretching of the spring), and its direction is opposite to the displacement (it both 

‘pulls’ and ‘pushes’), in other words: 

   rF D x , (4) 

where D shall be the so-called spring constant (its value is the higher the stronger the spring is). 

Putting the force (4) on the right hand side of the formula (3) you will get: 

 
D

a x
m

   , (5) 

and if you put the definition (1) providing the rate of change of the displacement x beside it, you 

will get the equations of motion describing the changes over time: 

 

' rate of change of  over time '

' rate of change of  over time '





  


x v

D
v x

m

 (5a) 

 

(From the point of view of mathematics, (5a) is a set of differential equations, the solution of which 

is provided by the x(t) and v(t) functions which comply with the equations of (5a). The set of (5) is a 

very simple type of differential equations, which can be solved ‘manually’ just as well, but this is 

not the purpose of this current discussion.) In this attempt, as it was done before using the Excel 

spreadsheets, the x(t) and v(t) functions will be identified and studies with the help of a computer 

and the numeric method. Numeric mathematical methods will be covered in a separate chapter, it 

was assumed in this case that the computer programme necessary for this such as the free Dynamics 

Solver programme (http://tp.lc.ehu.es/jma/ds/ds.html) is available, which is also described in our 

DS_brief_tutorial.pdf. The following functions need to be applied for the most fundamental level of 

use of an already completed *.ds problem-file: run with the  icon, stop with the  icon, 

continue with the  icon, delete graphic windows using the  icon. The display of the parameter 

table with the  icon, and the display of the initial conditions table will take place with the use of 

the  icon. At this point we recommend to try the  harmonic_oscillator.ds programme! 
 

http://tp.lc.ehu.es/jma/ds/ds.html
DS_brief_tutorial.pdf
harmonic_oscillator.ds


 
Figure 2: the image of the linear harmonic oscillating motion in the programme Dynamics Solver 

(m = 0.5, D = 200) 
 

Let’s assume that for instance m = 0.5 and D = 200, with the initial conditions of x0 = 0.05 and 

v0 = 0, respectively (in SI units of measurement, use decimal points in the programme!), and a 

slight change to the values of the m mass and the D spring constant parameters is recommended. 

(The parameter k is also included. This will be explained in the next section, for the time being, let 

it be a zero value). You can view the results of the run of the opened problem file in two graphic 

windows. In the upper window the x(t) displacement function is plotted. A (sinusoidal) periodic 

motion, the well-known harmonic oscillatory motion is clearly discernible. The motion of the so-

called phase-point, provided by the values taken by the x displacement and v velocity at any 

moment are shown in the lower window in the so-called x-v phase plane, i.e. the curve drawn, along 

which the phase point moves on. It is called a trajectory. This time, the trajectory is a closed curve 

(i.e. a circle or ellipse), which is also a way to illustrate periodical motion, since the phase point 

goer round and round the curve, i.e. a so-called limit cycle is formed. 

 

(2) Taking friction into account 

In the next step, the friction force, impeding the motion in question will be included in the 

description, which is, in fact, the viscous friction force impacting the piston moving in the hydraulic 

cylinder, since it is proportional with the momentary v velocity of the body (think of a car: the 

higher its speed of travel, the larger is the braking force exerted on it by the air), in other words: 

   kF k v , (6) 

where 0k  is the viscous attenuation coefficient. 

Putting the forces (4) and (6) in the right hand side of the (3) Newton-law: 

 
D k

a x v
m m

     ,  

and adding the definition (1) providing the rate of change of the displacement x beside it, you will 

get the dynamic set of equations describing the changes over time: 

 

' rate of change of  over time '

' rate of change of  over time '





    


x v

D k
v x v

m m

 (7) 

 

Let’s run the  harmonic_oscillator.ds programme again, but this time provide the k friction 

parameter a value other than zero, let it be for instance k = 0.5.  

harmonic_oscillator.ds


 

 
Figure 3: the image of an attenuating oscillatory motion in Dynamics Solver (m = 0.5, D = 200, 

k = 0.5) 
 

The figure obtained speak for themselves again: an attenuating oscillatory motion appears. The 

displacement-time function is obviously a sinusoidal oscillation with a well perceivable 

exponentially declining amplitude, while the trajectory on the displacement-velocity phase plane it 

such a spiral which leads into a stable state called fixed point (in this case, the origin of the 

coordinates, that is in a state with zero displacement and velocity). 

 

(3) Expansion of the non-linear spring force 

Taking the material properties of the spring into account just as well, you can typically distinguish 

springs which harden and springs which soften with stretching. Mathematically these impacts can 

be included in the force dependence by using a new member proportional with x3 (an x2 member 

makes no sense in physics, since it is independent from the sign of x, although it is expected from 

an elastic force that it always be opposite to the displacement), therefore, instead of (4), now: 

 
3    rF D x E x , (8) 

where E is the so-called anharmonic factor which is 0E  for hardening and 0E  for 

softening springs. 

Putting the elastic force (8) and the friction force (6) in the right hand side of the (3) Newton-law:  

 
3D E k

a x x v
m m m

       ,  

and adding the definition (1) providing the rate of change of the displacement x beside it, you will 

get the dynamic set of equations describing the changes over time: 

 3

' rate of change of  over time '

' rate of change of  over time '





      


x v

D E k
v x x v

m m m

 (9) 

 

Run the  anharmonic_oscillator.ds programme this time, where the new E parameter will also 

appear, and choose for instance a value of  E = 8*106. Without friction (k = 0) still a periodical 

motion (limit cycle) appears, while in the case of a friction force (pl. k = 1) the oscillatory motion’s 

frequency changes over time with an attenuating amplitude (Figure 4). 
 

anharmonic_oscillator.ds


 
Figure 4: the image of an anharmonic attenuating oscillatory motion in Dynamics Solver 

 

(4) Addition of an external periodical exciting force 

The environment of an oscillating body may exert a force impact on the body, and in many cases 

such an impact is of periodical nature. (In the implementation method seen on Figure 1 the external 

excitation is provided by the eccentric disk.) The impact of the eccentric disk can be taken into 

account with the use of the harmonic function with F0 force-amplitude and T cycle time: 

 0

2
cos

 
   

 
gF F t

T
. (10) 

Putting the elastic force (8), the friction force (6) and the exciting force (10) in the right hand side of 

the (3) Newton-law:  

 
3 0 2

cos
FD E k

a x x v t
m m m m T

 
          

 
,  

and adding the definition (1) providing the rate of change of the displacement x beside it, you will 

get the dynamic set of equations describing the changes over time: 

 3 0

' rate of change of  over time '

2
' rate of change of  over time ' cos





  

          
 

x v

FD E k
v x x v t

m m m m T

 (11) 

At this point, however, you must think it over, how many variables you need to specify the 

complete state of the system! From a physical perspective it is not difficult to understand that the 

provision of the momentary x(t) displacement and v(t) velocity is not enough any more in the case 

of an external application of a force if you want to determine the value of the x(t+dt) displacement 

(as well as the v(t+dt) velocity) which can be expected in the next moment, since it can obviously 

be influenced by the dynamic effect of the external force acting at the moment t, which is 

characterised by the following phase in the case of the periodical excitation (10): 

 
2

  t
T

. (12) 

This is then, how the phase space of the excited oscillation will be expanded to three dimensions: 

beside x displacement and v velocity the φ excitation phase will be included among the state 

variables. According to (12) φ phase is a linear function of t time, consequently the steepness of the 

‘rate of change’ (i.e. the differential quotient) line is thus: 



 
2

'rate of change of  over time'


 
T

. (13) 

When (11) is completed with the equation (13) the set of differential equations providing the 

dynamics of the periodically excited frictional anharmonic oscillation, in other words of the 

Duffing-oscillator can be obtained: 

 
3 0

' rate of change of  over time '

' rate of change of  over time ' cos

2
'rate of change of  over time '







 



        





x v

FD E k
v x x v

m m m m

T

   . (14) 

Figure 5 shows an actual experimental setup implementing the Duffing-oscillator (external 

excitation is provided here by a vibrating (shaking) table instead of the car jerked with the eccentric 

disk), and additional experimental arrangements of the model can be seen on the video 

Duffing_magnets.mov. 
 

  
Figure 5: the picture of a Duffing-oscillator [1] implemented in an experimental arrangement 

 

With the help of the formula (14) the mathematical model wanted is now obtained, which is 

perfectly suitable in this form to provide the input to some computer programme: in fact, 

numeric algorithms need the expressions defining the rate of change of the variables over time 

(found on the right hand side of these equations) and, of course, the values of the parameters 

included in them. 
 

You can use, for instance, the Dynamics Solver programme to carry out the numeric simulation. 

Let’s run the  Duffing-oscillator.ds problem file on it (the preparation of the problem file is 

introduced from step to step in a separate chapter in details). The respective values of the selected 

physical parameters (specified in SI units of measurement) may be as follows (for the order of 

magnitude of the range of parameters see for instance in [2] and [3]): 

2 6

02 2 2 2
0,5  , 2 10  , 8 10  , 1  , 50  és 0,3 


       

kg kg kg kg m
m kg D E k F T s

s m s s s
. 

You only enter the numeric values in the programme, under the agreed assumption that all values 

are to be understood in SI units of measurement. From this it will also follow that the respective 

variables (time, displacement, velocity and exciting phase) will also appear in SI units! A copy of 

the run screen can be seen on Figure 6. 

 

Duffing_magnets.mov
Duffing-oscillator.ds


 
Figure 6: chaotic behaviour of the Duffing-oscillator in Dynamics Solver 

 

The lower graphic window displays the v(t) velocity-time function and it can be clearly seen that it 

does not present any regular behaviour, the chaotic nature appears. In the upper graphic window 

the x-v (displacement-velocity) phase plane is displayed again, but using a specific representation 

this time, the so-called stroboscopic imaging because of the periodical excitation, which is in its 

essence discrete time sampling in the identical phase time moments of the exciting force. (As if a 

series of photographs would be taken using the stroboscope lamp’s light signals flashing with a T 

cycle time. To better understand how it works, see the video stroboscop.mp4). The strange shape 

plotted in the x-v phase plane using the stroboscopic imaging technique will be the chaotic attractor 

of the Duffing-oscillator, showing an interesting geometric structure, bearing the characteristics of a 

fractal pattern (the exciting world of fractals is shown in a separate paper). 

 

With the help of the Dynamics Solver an additional key feature of chaos can be studied as well in a 

simple way: this is the extreme sensitivity of the behaviour of a chaotic system over time reflecting 

to the initial conditions. This means that very different time dependence can be experienced when 

the system is set off from very close initial conditions with the same values of the parameters, in 

other words the customary approach ‘little initial error resulting in a little deviation of the result’ 

will not be met in this case. The most spectacular way of illustration of this extreme level of 

sensitivity is the plotting of the so-called ensemble diagram. This diagram depicts the changes over 

time of a variable in the chaotic system starting from multiple initial conditions very close to each 

other. Let’s run the Duffing-oscillator_ensemble.ds problem file! When the parameter values 

defined above are entered into the programme, it shows the v(t) velocity function in 5 different, but 

very close initial x0 displacement values (in order with the actual values of -0.0006; -0.0003; 0; 

+0.0003; +0.0006), while the initial value of the other two variables of the system is always 

identical (v0 = 0 and φ0 = 0). 

The screen image received can be viewed on Figure 7. It is clearly seen that the curves providing 

the changes of velocity over time run in parallel for a while, then diverge entirely, in other words 

the minimum differences in the initial values result in entirely different behaviour after the lapse of 

a characteristic time period. 

 

stroboscop.mp4
Duffing-oscillator_ensemble.ds


 
Figure 7: ensemble diagram of the Duffing-oscillator in Dynamics Solver 

 

Based on these results the characteristic features of the chaos phenomenon can be postulated 

precisely: 

 change over time (i.e. motion) of a system which can be described with simple (low degree 

of freedom) and unanimous (deterministic) regularities (that is, using a couple of non-

linear dynamic equations), 

 irregular (non-periodical, complicated) behaviour, 

 long term behaviour in the phase space fully specifying the change over time is 

characterised by a kind of geometric structure and order (the attractors in the phase space 

show fractal geometry), 

 due to the excessive growth of the error in the initial state (in other words, extreme 

sensitivity to the initial conditions) predictions for a long term are practically impossible 

to make (only a probability description can be given). 

 

Finally a line of thought is presented here for the parametering of the exciting force. 

Provided external excitation takes place in a way shown on Figure 1, the eccentric disk would jerk 

the car with the harmonic oscillatory motion described by the   0

2
cos

 
   

 
Kx t A t

T
 

displacement-function, A0 amplitude and T cycle time. In case of a harmonic oscillation acceleration 

is proportional (and opposite direction) with displacement, therefore the time function of the 

acceleration of the car will be as follows: 

   
2 2

0

2 2 2
cos

       
           

     
K Ka t x t A t

T T T
. 

Since the body with m mass is found in the accelerating coordinate system fixed to the car, it is 

exposed to the inertial force   t KF m a , assuming the role of the exciting force: 



   
2

0

2 2
cos

    
         

   
g KF t m a t m A t

T T
. 

This formula compared with the formula of the exciting force (10) it can be concluded that in the 

case exciting takes place with an eccentric disk, the following applies: 
2

0 0

2 
   

 
F m A

T
, 

of which, the A0 amplitude of jerking: 

 

2

0
0 2

2






F T
A

m
. 

Substituting the parameter values specified above, the amplitude applicable to the jerking provided 

by the eccentric disk will be A0 = 0.228 m. 

 

 

Appendix: Elimination of dimensions 

 

Below, a detailed explanation follows on the method of the so-called elimination of dimensions on 

the example of the Duffing-oscillator, the detailed mathematical derivation can be skipped. 

 

With the equation (14) in fact the wanted mathematical model has already been obtained, but an 

important aspect was neglected up to this point. Now it is time to reconsider: the role of units of 

measurement. Physical quantities do have a numeric value but they must have a unit of 

measurement just as well, for instance in the motion equations of the Duffing-oscillator (14) under 

consideration there are 1+3 variables (t time as an independent variable and x displacement, v 

velocity and φ phase as dependent variables) and 6 parameters (m, D, E, k, F0 and T), which have SI 

units as follows: 

          és  ,   , 1mt s x m v
s

     for variables, (F1..a) 

 

and             02 2 2 2
 ,  ,  ,  ,  és 

kg kg kg kg m
m kg D E k F T s

s m s s s


       

for parameters,  (F.1.b) 

 

However, a computer works with numbers only, units of measurement are uninterpretable for it. T 

solve the problem, the customary procedure is elimination of the dimensions, in other words the 

introduction of new variables without a unit of measurement. 

 

As a first step, basic values are chosen for the two basic variables: L base length for displacement 

and T base time for time, by which the new dimensionless variables 
, , és x t  are introduced: 

, , és x L x t T t    , 

Using these, the differential changes will be as follows: 
, , és ddx L dx t T dt    , 

therefore: 

, ,
,

, ,

dx L dx L dx L
x x

dt T dt T dt T


   


 and 

 
 

,
,

,

2 , 2,

Ld vdv L dv LT
v v

dt T dt Td T t


   


. 

Substituting them in the middle equation of (14): 



, , 3 ,3 , ,0

2

2
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FL D E k L
v L x L x v T t

T m m m T m T

 
           

 
, 

multiplying both sides of the equation with the expression 

2T

L
: 

  
2

, 2 , 2 2 ,3 , ,0 cos 2
F TD E k

v T x T L x T v t
m m m mL

            ,  

 

It is worth to consider, how to select the arbitrary base values for T and L. Selection of T is almost 

trivial (even the letter sign is identical), let’s choose T cycle time of excitation. As to the selection 

of L, a possibility readily at hand will be to choose it so that the two first members on the left hand 

side of the equation (that is, those members which are dependent on the displacement) would have 

an identical coefficient, that is: 

2 2 2D E
T T L

m m
   , 

from which: 

D
L

E
 . 

 

Having made these choices, (14) will now be transformed into: 
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2
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2
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
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   .  

 

Finally, for reasons of convenience (i.e. laziness) denotation with a comma will be omitted for the 

new variables, and thus the end result will be as follows: 

    3 cos

2

x v

v A x x B v C 

 



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
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   . (F.2.) 

where: 

 

2
2 0 ,  és 

F TD k E
A T B T C

m m m D
    , (F.2..a) 

which parameters are also lacking any unit of measurement (!), as you can easily make sure on the 

basis of (F.1.b). An additional observation of fundamental importance is that during the elimination 

procedure of dimensions the number of model parameters dropped from 6 to 3, in other words all 

systems where the A, B and C parameters are identical will be equivalent in terms of mathematical 

behaviour (mathematically isomorphic), irrespective of the actual values given to the original m, D, 

E, k, F0 and T parameters! 

 

The (F.2) set of differential equations is a standard form which can be specified as an input to any 

arbitrary numeric computer programme (such as the Dynamics Solver) (in fact, only the controlling 

function on the right hand side of (F.2) need to be entered), and thus suitable for a dynamic testing 

procedure of the model (including, for instance, the examination of the chaos phenomenon). Let’s 



run the Duffing_dimless.ds problem file prepared according to (F.2)! Selected physical parameter 

values should be the same as defined above: 

2 6

02 2 2 2
0,5  , 2 10  , 8 10  , 1  , 50  és 0,3 


       

kg kg kg kg m
m kg D E k F T s

s m s s s
, 

by which, according to (F.2.a), the parameters lacking any dimensions will be: 

36 , 0,6 és 1800A B C   . 

A copy of the run screen can be seen on Figure 8.  
 

 
Figure 8: chaotic behaviour of the Duffing-oscillator in the Dynamics Solver 
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