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Introduction 
 

 

It is important that scientific results are mentioned in lessons, in many cases they are more 

interesting than the creations of human imagination. Without increasing the curriculum this can be 

achieved best through problems, however, nowadays problems lose ground in the physics lessons. 

Conceptual physics, that is, physics that avoids using quantitative relationships and tries to achieve the 

aim of understanding terms and phenomena more deeply is very popular. Its supporters contrast it with 

the “traditional teaching of physics”, which is depicted as a simple statement of formulas followed by 

substitution into them. (In the physics methodology literature available in English “end-chapter 

problems” often has negative connotations.) 

As one measure of the effectiveness of education is the successful linking of learning with prior 

knowledge and its application in new situations [1], problem solving is essential for a deeper 

understanding. Numerous researches prove that experience gained in problem solving has a positive 

effect on answering qualitative questions successfully as well [2], [3]. The way of learning, the working 

of science, the difficulties of individual discoveries and their significance in the history of science can 

be shown only through measurements and calculations.  

Therefore, in search for ways in which the modern areas of astronomy can be interpreted in a high 

school setting, we were searching for challenging tasks that match the colourful, contemporary 

astronomical researches and achievements but also match the knowledge of high school students, thus 

facilitate the implementation of problem-based learning. Problem solving is much more than 

substitution: recognizing the usability of relations and the usability constraints as well as determining 

what variables are needed and how their values can be obtained from the available information, which 

are often not given directly, but in tables, graphs or otherwise. 

The unconventional tasks listed here may be of interest to students. Arousing interest is also 

supported by pictures and drawings, but the emphasis is on presenting the real world, so all tasks are 

based on real measurement data.  

The popularity of science-fiction movies and computer games also shows how much the world of 

distant celestial bodies moves the imagination of young people. For this reason, we expect that the 

introduction of the exoplanets of distant star systems (for example, a gas giant greater than Jupiter, but 

orbiting closer to its star than Mercury, so heating up and losing matter like a comet, or a planet similar 

to planet Tatooine known from Star Wars with two suns shining in the sky) through problems can be 

suitable for communicating scientific results at high schools. Most problems therefore investigate this 

topic. 

In the discussion of exoplanets, the methods used for their discovery are of utmost importance, so 

we dedicated a separate chapter to them. Besides the most effective ones, namely the transit and the 

Doppler methods, we also deal with the astrometry method, where the researchers expect to achieve the 

appropriate sensitivity through the Gaia space telescope, which is already in operation today. With these 

methods, the process of scientific cognition can also be traced, in which we first perform observations 

and collect data with more and more accurate instruments, then compare the results of calculations using 

models based on these data with the experience.1 

One of the main directions of the conclusions of planetary properties (such as their surface 

temperature, atmosphere) is whether it can be imagined that they hold life (similar to life on Earth). In 

the problems, the issue of habitability is simplified to ensuring that water can exist in liquid state 

permanently on the exoplanet. The observation the planets of the Solar System from a distance is 

important for the same reason, suggesting that we are not the only ones who search for extra-terrestrial 

                                                 
1 As a result of the two decades of research, we now know the essential properties of nearly four thousand exoplanets. From 

the aspect of school education, it is important to know that the measurement data are public, and the results acquired from 

them can be browsed in databases that are updated regularly (e.g. exoplanet.eu). 
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(intelligent) life. The examples illustrate the difficulties in discovering distant planetary systems that 

arise not only in the case of Earth-type planets, but also in the case of gas giants similar to Jupiter. 

Another chapter contains problems related to modern spacecraft. This is not only due to the fact 

that the exoplanet discovered in Proxima Centauri's habitable zone raises the question of the availability 

of nearby stars with existing spacecraft. We also want to draw attention to the results of the growing 

number of space probes and space telescopes in the Solar System. We commemorate one of the oldest 

space probes, Voyager-1, which has been communicating for 40 years now, but the exercises also include 

the latest ones like the New Horizons and the Juno Space Probe. In the case of space telescopes, similarly 

to terrestrial radio telescopes that are not included in traditional problems, an inescapable technical issue 

is improving resolution. In today's world of electronic devices, it is important to observe the Sun and 

solar flares as well, so the spacecraft designed for this purpose is also included in our problems.  

Another group of problems of the chapter focus on asteroid research and its results that have 

become increasingly important. The favourite topics of the media and film industry include cosmic 

disasters. Since news about planetary asteroids passing in the vicinity of Earth often give rise to 

unjustifiable fear (since most of them pass outside the Moon's orbit), common sense can be improved 

by problems using the probability method. Nevertheless, such events (such as the Chelyabinsk meteor 

impact) actually take place, so many astronomers have the primary task of mapping asteroids passing 

close to Earth. There are several tasks to deal with asteroids, with the consequences of their possible 

impact. We show an example for an existing impact crater and discuss the issue of preventing possible 

impacts by using images of an object shot into the nucleus of a comet. 

Finally, a separate chapter was devoted to problems that promote inquiry-based learning and 

independent student activity. These problems therefore provide new opportunities in the field of 

methodology, not in the field of the aforementioned astronomical results. 
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1. Introduction of exoplanets 
DIMENSIONS AND DISTANCES 
 

1.1 Most sci-fi stories are based on the premise that the problem of fast interstellar travel has been 

solved. The 40-year anniversary of the Voyager-1 space probe gives topicality to this issue. However, 

the technologies currently known are predicting very long travel times.  

As we discover more and more exoplanets, sooner or later we will find one in the vicinity that shows 

signs of life. At this point, there will soon be a demand for manned or unmanned space missions to study 

the extra-terrestrial life form. 

The following table contains the data of a few exoplanets, including their distance from us. 

(a) So far, the fastest unmanned spacecraft was New Horizons (v = 58,320 km/h), while among the man-

driven ones Apollo-10's speed was the highest (v = 39,896 km/h). Find the time required to reach the 

closest exoplanet in the table at these speeds.  

(b) Engineers believe it is possible to build a spacecraft whose speed can exceed 1000 km/s. Find the 

time required for the journey to the close exoplanets listed in the table with such a spacecraft. 

 
Name Constellation Distance 

(light-year) 

Distance 

from the star 

(AU) 

Mass 

(Earth’s 

mass) 

Orbital 

period 

Epsilon Eridani b Eridanus 10.5 3.4 500 6.9 years 

Gliese-581g Libra 20.3 0.14 3.1 36 days 

Giese-674 Ara 14.8 0.04 12 4.7 days 

Gliese-876d Aquarius 15 0.02 8 1.9 days 

Gliese-832b Grus 16.1 3.4 200 9.3 years 

Gliese-176 Taurus 31 0.07 25 8.7 days 

Fomalhaut b Piscis Austrinus 25 115 600 872 years 

61 Virginis b Virgo 28 0.05 5.1 4.2 days 

 

1.2 At first, astronomers discovered huge Jupiter-sized exoplanets, but as the measurement 

technologies evolved, so-called super-Earths were also found, which were "only" a few times larger than 

Earth. (Nowadays we already know exoplanets smaller than Earth, e.g. Kepler-42d.) 

A super-Earth is not necessarily similar to Earth. It may be a gas giant similar to Jupiter, it may be an 

icy world like Uranus or Neptune, but it can be a rocky planet like the inner planets of the Solar System. 

To find out the type, the internal structure and the atmospheric composition of a discovered exoplanet, 

it needs to be investigated thoroughly. 

Scientists first determine the mass and the size (volume) of the exoplanet. Knowing the mass, the volume 

and thus the density, they can model its inner composition and structure well enough. The creation of 

the model starts by selecting a suitable core-shell model. (This is not a definitive definition of the inner 

structure and the composition of the celestial body, it is only a starting point for further investigations.) 

(a) According to a simple model of the inner structure of exoplanets, suppose our imaginary exoplanet 

has a spherical, solid rock core and its outer shell is a thick layer of ice. Find the radius of the exoplanet 

if the volume of the core and the shell is 
12 34.18 10 km  and 

13 32.92 10 km , respectively. 

 
(b) Earth’s volume is 

12 31.1 10 km . How many times greater is the volume of the core and of the shell 

of the exoplanet than Earth’s volume? 

(c) Suppose that the astronomers who discover the super-Earth can determine its mass as well and find 

that it is 8.3 times Earth’s mass. Find the mass and the density of the exoplanet. 
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(d) Based on the distance of the exoplanet from its star, it is assumed that the thick shell consists of solid 

ice, whose density is 900 kg/m3. Find the density of the core of the exoplanet. 

1.3 With the help of the Hubble Space Telescope it was proven that exoplanet HD 209458b (also 

known as Osiris) located in the Pegasus constellation at a distance of 150 lightyears orbits around its star 

whose mass is similar to the Sun with a period of 3.5 days. The gas giant orbits around its star well 

within the radius of the orbit of Mercury, only at a distance of 0.047 AU.  

Hubble’s COS spectrograph found water and heavy elements, carbon and silicon in the atmosphere of 

the exoplanet, whose temperature is several thousand degrees. Measurements based on the analysis of 

hydrogen, carbon and silicon spectrum lines have shown a strong stellar wind that drives the blown-off 

gas away like the train of a comet. That is, the planet is orbiting so close to its star that its radiation blows 

the atmosphere of the planet into space. 

The matter loss of the atmosphere of the exoplanet is 
11104  g/s. Find the mass of matter lost by the 

exoplanet 

(a) in one day, 

(b) in one year. 

(c) Jupiter’s mass is 
271.9 10 kg , its radius is 

77.13 10 m . HD 209458b’s mass is approximately 70% of 

Jupiter’s mass and its radius is approximately 1.4 times Jupiter’s radius. Find Jupiter’s and exoplanet 

HD209458b’s density. 

(d) Assume that similarly to Jupiter, this exoplanet also has a rocky core whose mass is 18 times Earth’s 

mass. Find the mass of HD 209458b’s atmosphere. 

(e) How long will it take until HD 209458b completely loses its atmosphere if the rate of matter loss 

remains the same? 

 

 

1.4 From planet Kepler-16b discovered by NASA’s Kepler space telescope two suns can be seen in 

the sky instead of one. Of the planets discovered in our Galaxy so far, Kepler-16b resembles most to 

planet Tatooine, Luke Skywalker’s home planet known from the popular science fiction movie Star 

Wars. In reality Kepler-16b is not habitable, because it does not have a cold, solid surface, but like 

Tatooine, it orbits around two stars. 

  
Luke Skywalker is watching the twin sunset. 

The binary star (the greater is Kepler-16A and the smaller is Kepler-16B) is at a distance of 200 light-

years in the direction of the Cygnus constellation. The smaller star, Kepler-16B orbits around its heavier 
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twin on a circular orbit whose radius is 0.2 AU = 30 million km. The diameter of the two stars is 

890000 km and 300000 km, respectively. 

Exoplanet Kepler-16b orbits around Kepler-16A at a distance of 0.7 AU = 105 million km. Its orbit is 

nearly a perfect circle. 

 

 
https://www.jpl.nasa.gov/spaceimages 

 

(a) Imagine that you are standing on the surface of “Tatooine” and watching the two stars in the sky like 

Luke Skywalker was watching the twin suns at sunset. Determine the maximum possible angular 

separation of the two stars when watched from Tatooine. 

(b) Determine the angle in which the diameter of the stars is seen from Tatooine at the time when they 

are furthest apart in the sky. 
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1. Introduction to exoplanets 
THE HABITABLE ZONE OF EXOPLANETS,  

MODELLING THE HABITABLE ZONE 
 

 

1.5 Around a star, the habitable zone means the zone where water can exist in liquid state permanently 

on the surface of a rocky planet, that is, (under conditions similar to Earth) if the temperature is between 

273 K and 373 K. The position of this zone depends on the energy output of the star. The brighter the 

star, the more energy it transfers to its planet, so around a star with higher luminosity the surface 

temperature of a planet is also higher. 

The next table contains the surface temperature of planets in kelvins as the function of the luminosity of 

the star (L) and the distance between the planet and the star (d). The luminosity of the star is given 

relative to the Sun’s luminosity and the distance is given in Astronomical Units. 

The model used for calculating temperature assumes that the albedo (reflexive property) of the exoplanet 

is similar to that of Earth and also that the concentration of carbon dioxide is the same as on Earth. 

 
 

L\d 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 

0.1 361 255 209 181 162 147 136 126 120 114 109 104 100 97 93 90 

0.5 540 382 312 270 242 220 204 191 180 171 163 156 150 144 139 135 

1 642 454 371 321 287 262 243 227 214 203 194 185 178 172 166 161 

1.5 711 503 410 355 318 290 269 251 237 225 214 205 197 190 184 178 

2 764 540 441 382 342 312 289 270 255 242 230 220 212 204 197 191 

2.5 808 571 466 404 361 330 305 286 269 255 243 233 224 216 209 202 

3 845 598 488 423 378 345 319 299 282 267 255 244 234 226 218 211 

3.5 878 621 507 439 393 359 332 311 293 278 265 254 244 235 227 220 

4 908 642 524 454 406 371 343 321 303 287 274 262 252 243 235 227 

4.5 935 661 540 468 418 382 354 331 312 296 282 270 259 250 242 234 

5 960 679 554 480 429 392 363 340 320 304 290 277 266 257 248 240 

5.5 983 695 568 492 440 402 372 348 328 311 297 284 273 263 254 246 

6 1005 711 580 503 450 410 380 355 335 318 303 290 279 269 260 251 

6.5 1025 725 592 513 459 419 388 363 342 324 309 296 284 274 265 256 

7 1045 739 603 522 467 426 395 369 348 330 315 302 290 279 270 261 

 

(a) For each luminosity value, colour the temperatures that are close to or within the interval where water 

is liquid. 

(b) How does the habitable zone change as the luminosity of the star increases? 

(c) According to this model, which planet(s) of the Solar System is (are) in the habitable 

zone? 

(d) Calculate the area of the Sun’s (L = 1) habitable zone in this model. 

 

 
Remark: 

The figure shows the habitable zone of stars of different temperature, therefore different luminosity as a function of the 

distance from the star. The green part shows the habitable zone. According to some models the dark blue zones on the outer 

border of the green zone also belong into the habitable zone. Exoplanets in the claret zone are too hot while exoplanets in the 

blue zone are too cold to hold water in liquid state permanently. Earth is also shown close to the inner border of the habitable 

zone. 

 



 9 

 
    http://spacemath.gsfc.nasa.gov 

 

 

 

1.6 Astronomers have discovered almost 4,000 exoplanets around the nearby stars. When they discover 

one, they also investigate whether liquid water can be present on its surface. Planets that orbit in the 

zone called habitable zone by astronomers have temperature conditions where water can exist in liquid 

state permanently on the surface (under conditions similar to Earth). In our Solar System Mercury and 

Venus are too close to the Sun, their surface is so hot that water cannot remain in liquid state on them, 

it would evaporate from their surface. On Mars and planets beyond it water freezes to ice. Our Earth 

orbits in the Sun’s habitable zone. 

According to a simple model, water freezes on the surface of a planet that orbits at distance D given in 

astronomical units around a star whose mass is given as M times the Sun’s mass, if 

0.8 0.12M D  . 

(a) Draw the solution of the inequality in a coordinate system. On the vertical axis show the mass of the 

star as a multiple of the Sun’s mass in the interval [0.0; 2.0] and on the horizontal axis the distance of 

the planet from the star in Astronomical Units in the interval [0.0; 3.0] using a step of one tenth. Colour 

the region under the freezing point green. 

(b) Water boils on the surface of the planet if 

1.2 0.18M D  . 

Colour the region above the boiling point blue. 

(c) In addition to too high or too low temperatures, captured rotation can also make a planet 

uninhabitable. Captured rotation means that the orbital period and the period of rotation of a celestial 

body are equal. In such a case, the planet always turns the same half to its star, so this side always has 

daylight (and heat), while on the other side eternal night darkness and the resulting very low temperature 

are probable. For planets with captured rotation that have an atmosphere, high-speed winds may reduce 

the temperature difference between the two sides, but the planet still does not become habitable. 

An exoplanet orbits around its star with captured rotation if 

3.3 1.3M D    

Colour the region where the planet has captured rotation red. What can be stated about the uncoloured 

region? 

  

http://spacemath.gsfc.nasa.gov/
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(d) Which of these imaginary exoplanets orbits in the habitable zone of its star? 

 Lehel : D = 2.0 AU, M = 1MSun 

 Hades : D = 0.5 AU, M = 2MSun 

 Oceania: D = 2.0 AU, M = 2MSun 

Remarks: 

1. Based on the measurements of the Kepler telescope we believe that among the hundred thousand million stars of the Milky 

Way those are rare that have no planets, so even a thousand million exoplanets can exist only in our Galaxy, and among these 

many can be habitable. These exoplanets are the primary objectives of the astrobiological research outside the Solar System, 

we are searching for life similar to life on Earth on these. 

2. In the English terminology exoplanets that orbit in the habitable zone are called “Goldilocks planets”. The name refers to 

the small girl from the fairy tale Goldilocks and the Three Bears, who tasted the porridge of the bears at the home of a bear 

family. She found the father’s porridge too hot, the mother’s porridge too cold and the baby bear’s porridge just right, neither 

too hot nor too cold. 

 

 

1.7 To have a liquid water on a planet's surface permanently, the exoplanet must be close enough to its 

star to melt the ice, but not too close to vaporize the water on its surface. The suitable zone is called 

habitable zone. 

Based on a simple model, the temperature of an exoplanet can be calculated with the following formula:  

eff0.6
R

T T
d

    

where Teff is the effective temperature of the star in kelvins, R is the radius of the star, d is the average 

distance of the exoplanet from its star. 

(a) If a star has the same temperature and radius as the Sun (Teff = 5,770 K and  

R = 700,000 km), find the distance limits between which the temperature is suitable for an exoplanet to 

have liquid water on its surface. Assume that the conditions on the planet are similar to those on Earth. 

(b) Is Earth habitable based on these results? Why? 

(c) Canopus (α Carinae), which is visible from the southern hemisphere, is the second brightest star in 

the sky. Its temperature is 7,000 K and its radius is 70 times the radius of the Sun. Assuming Earth-like 

conditions, find the range in which water can be in liquid state on the surface of an exoplanet around 

this star. Compare the position of the calculated zone with the orbital radii of the planets of the Solar 

System. 

 

 

1.8 (Problem from a preparatory course for Students’ Olympiad) 

An exoplanet orbits on an orbit whose eccentricity is e = 0.2 and semi-major axis is a = 4 AU. The 

habitable zone of the star is between rinner = 3 AU and router = 4 AU. Calculate the percent of the orbital 

period that the star spends in the habitable zone. 
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1. Introduction of exoplanets 
KEPLER’S THIRD LAW AND THE APPLICATION OF THE 

LAW OF GRAVITY FOR EXOPLANETS 
 

1.9 Star CoRoT-2a is 880 light-years from us in the direction of the Aquila constellation. Its planet 

named CoRoT-2b is a gas planet 1.4 times greater than Jupiter, and its mass is three times the mass of 

Jupiter. The planet orbits around the star with a period of 1.7 days, at a distance of only 5 million km, 

so close that its upper atmosphere is heated to 1,500 K by the radiation of the star. 

(a) Find the mass of star CoRoT-2a in terms of the Sun’s mass. Compare exoplanet CoRoT-2b’s orbital 

radius with the orbital radii of the planets of the Solar System. 

(b) According to a simple model the mass of the atmosphere of a planet is 50% of the mass of the planet. 

Jupiter’s mass is 315 times Earth’s mass, 
271.9 10 kg . CoRoT-2b loses approximately 5 million tons of 

matter per second due to the radiation of its star. If we assume that this rate of evaporation remains 

constant as given above, how long will it take until the planet loses its atmosphere completely? 

 

1.10 (A problem from the International Astronomy and Astrophysics Olympiad, 2015.) 

A few exoplanets have been discovered around star GJ 876 (MGJ876 = (0.33 ± 0.03)MSun), their data are 

given in the following table where MS is the Sun’s mass, mE is Earth’s mass and mJ is Jupiter’s mass  

(mJ = 1.8913·1027 kg). Assume that the exoplanets orbit in the same direction around star GJ 876. Two 

planets are said to be in resonance if the ratio of the orbital periods can be approximated well with the 

ratio of two small integers. Find exoplanets in orbital resonance in the GJ 876 system. 

GJ 876 system Mass Semi-major 

axis (AU) 

GJ 876b 2.276 mJ 0.2083 

GJ 876c 0.714 mJ 0.1296 

GJ 876d 6.8 mE 0.0208 

GJ 876e 15 mE 0.334 

 

1.11 The nearby red dwarf Gliese-581 is 20 light-years from us in the direction of the Libra 

constellation. Its “crowded” system has six planets. The mass of exoplanet Gliese-581g is only three 

times Earth’s mass, so it is more likely to be a rocky planet than a gas giant. The planet orbits around its 

star with a period of 37 days with captured rotation, that is, it always faces its star with the same side: 

on one of the hemispheres there is eternal day, on the other one eternal night. 

(a) Draw a model of the Gliese-581 planet system. In the drawing 1 cm should correspond to 0.01 AU 

and in the case of the radius of exoplanets 1 mm should correspond to 5,000 km.  

Use the data of the following table: 

 

Planet Year of 

discovery 

Distance from 

the star (AU) 

Orbital 

period 

(day) 

Diameter 

(km) 

Gliese-581b 2005 0.041 5.37 50,000 

Gliese-581c 2007 0.072 12.9 20,000 

Gliese-581d 2007 0.22 66.9 25,000 

Gliese-581e 2009 0.028 3.15 15,000 

Gliese-581f 2010 0.76 433 25,000 

Gliese-581g 2010 0.15 36.6 20,000 
 

(b) Determine the mass of Gliese 581. 
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1.12 Exoplanet Kepler-10b, an Earth-sized exoplanet that orbits around star Kepler-10 with an orbital 

period of 20 hours at a distance of 2.5 million kilometres, was discovered in 2010 with the Kepler Space 

Telescope in the direction of the Dragon constellation, at a distance of 560 light years from us. The 

surface temperature of the planet exceeds 1,500 kelvins. By studying the transit of the exoplanet (its 

passing in front of its star and the resulting decrease in luminosity), the size of Kepler-10b is estimated 

to be 1.4 times the Earth’s size. Its average density is 8.8 g/cm3, which is higher than the density of iron 

and three times the density of the silicon-rich layer on Earth’s surface. 

(a) Find the mass of Kepler-10b. 

(b) Find the value of gravitational acceleration on exoplanet Kepler-10b. 

(c) Find the weight of a 60-kg human on Earth and on exoplanet Kepler-10b. 
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Solutions 1. 
 

1.1 (a) Of the exoplanets listed in the table the 

closest one is Epsilon Eridani b, at a distance of 

10.5 light years. 
12 1310.5 light-year 10.5 9.46 10 9.9 10 km      

At the speed of the unmanned spacecraft we 

would reach exoplanet Epsilon Eridani b in  
13

6

1

9.9 10
1.7 10 h 190000 years

58320
t


    . 

At the speed of the human-driven spacecraft we 

would reach it in 
13

9

2

9.9 10
2.5 10 h 280000  years

39896
t


    . 

 (b) The speed of a spacecraft that can travel at 

1,000 km/s is 1/300 of the speed of light, so it 

covers a distance of one light-year in 300 years. 

The following table contains the travel times 

calculated with the speed of 1,000 km/s. 

Name Distance 

(light-year) 

Travel time 

(year) 

ε Eridani b 10.5 3150 

Gliese-581g 20.3 6090 

Giese-674 14.8 4440 

Gliese-876d 15 4500 

Gliese-832b 16.1 4830 

Gliese-176 31 9300 

Fomalhaut b 25 7500 

61 Virginis b 28 8400 

Remark: 

An exoplanet has also been found around star Proxima 

Centauri, which belongs to the trinary star system closest 

to us, Alfa Centauri. This exoplanet is in the habitable 

zone. The travel time to this Earth-sized exoplanet, which 

is 4.3 light-years from us, would still take approximately 

1300 years. 
 

1.2 (a) The total volume is 
12 13 13 34.18 10 2.92 10 3.34 10 kmV        

Assuming that it is spherical,  

3 13 34
3.34 10 km

3
R     

42.00 10 20000 kmR     

(b) 
12

core

12

Earth

4.18 10
3.8 4

1.1 10

V

V


  


 

The volume of the core of the exoplanet is 

approximately four times that of Earth. 
13

12

2.92 10
26.5 30

1.1 10

shell

Earth

V

V


  


 

The volume of the shell is almost 30 times that of 

Earth. 

(c) The mass of the exoplanet is 
24 258.3 5.9 10 4.9 10 kgm       

The density of the exoplanet is 
25

22 3

4.9 10 kg
1500

3.34 10 m

m

V



  


 

Remark:  

Although the density 1500 kg/m3 is not much higher than 

the density of ice, the exoplanet still has a large core whose 

density is much higher. 

(d) core shell shell shellm m m m V        

25 13 94.9 10 2.92 10 10 900      

 
252.4 10 kg  . 

The density of the core of the exoplanet is 
25

core
core 12 9 3

core

2.4 10 kg
5700

4.18 10 10 m

m

V



  

 
 

This density suggests a rocky core. 

 

1.3 (a) In 1 day = 86400 s exoplanet 

HD 209458b loses 

11 16 104 10 86400 3.5 10 g 3.5 10 t
g

s
       

of matter. 

(b) In one year the matter loss is 

 
10 133.5 10 365 1.3 10 t    . 

(c) The planets are nearly spherical, so Jupiter’s 

volume is 

 
3

7 24 3

J

4
7.13 10 1.5 10 m

3
V       

Jupiter’s density is 
27

J
J 24 3

J

1.9 10 kg
1267

1.5 10 m

m

V



  


 

The density of the exoplanet is 

 
J

3 3

J

0.7 kg
323

m1.4

M

V
    

Remark:  

HD 209458b is an exoplanet whose density is among the 

smallest ones. 
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(d) The mass of the exoplanet is 
27

J0.7 1.3 10 kgm M     

The mass of the atmosphere is 

atmosphere E18m m M     

 27 24 271.3 10 18 5.9 10 1.2 10 kg       

(e) 
27

11

16

1.2 10
9.2 10 years

1.3 10
t


  


 

Remark: 

The rate of matter loss of the exoplanet seems to be huge 

but the received result, 920 thousand million years is 

almost 70 times the age of the Universe. With a few 

exceptions planets can live longer than their stars (lifespan 

of about 10‒20 thousand million years) despite such huge 

matter loss. 

 

1.4 (a) In the investigated position the two stars 

and the exoplanet form the vertices of a right-

angled triangle whose hypotenuse is the distance 

between the heavier star and the exoplanet and 

one of the perpendicular arms is the distance 

between the two stars:  

30
sin 0.286

105
   , so  17 . 

(b) Kepler-16A’s diameter is 890,000 km and it 

is 105 million kilometres from the exoplanet. So 

from “Tatooine” the diameter is seen in an angle 

0.89
0.0085 rad 0.49

105
    °. 

(c) Using Pythagoras’ theorem the distance of 

Kepler-16B is 
222 30105 d , so 

d = 101 million km.  

0.30
0.0030  rad 0.17

101
    ° 

By comparison: from Earth, Sun and Moon are 

seen in an angle of approximately 0.5°, the 

apparent size of Kepler-16A is approximately the 

same, and of Kepler-16B much smaller. 

 

1.5 (a) The table shows a correct colouring. 

(In a few cells the freezing point and the boiling 

point of water can be rounded down or up.) 

(b) As the luminosity of stars increases, the 

habitable zone gets further from them and its 

width also increases. 

(c) Venus and Earth 

The simplicity of the model is reflected by the 

fact that it considers Venus habitable, because it 

does not take greenhouse effect into account. 

(d) The requested region is an annular ring with 

area 

 2 2

o it r r     

where ro is the outer radius of the habitable zone 

and ri is the inner radius. 

From the values coloured in row L = 1 of the table 

ri = 0.6 AU and 

ro=1.2 AU 

so the requested area is 

 
2

2 21.2 0.6t      
12 27.6 10 km  

Remark: 

Looking more closely at the outer radius of the habitable 

zone, value 1.1 AU is a better approximation of the 

freezing point of water (273 K). Using this value 

 
2

2 21.1 0.6t      

 
2 12 22.7 150000000 6 10 km     

L\d 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 

0.1 361 255 209 181 162 147 136 126 120 114 109 104 100 97 93 90 

0.5 540 382 312 270 242 220 204 191 180 171 163 156 150 144 139 135 

1 642 454 371 321 287 262 243 227 214 203 194 185 178 172 166 161 

1.5 711 503 410 355 318 290 269 251 237 225 214 205 197 190 184 178 

2 764 540 441 382 342 312 289 270 255 242 230 220 212 204 197 191 

2.5 808 571 466 404 361 330 305 286 269 255 243 233 224 216 209 202 

3 845 598 488 423 378 345 319 299 282 267 255 244 234 226 218 211 

3.5 878 621 507 439 393 359 332 311 293 278 265 254 244 235 227 220 

4 908 642 524 454 406 371 343 321 303 287 274 262 252 243 235 227 

4.5 935 661 540 468 418 382 354 331 312 296 282 270 259 250 242 234 

5 960 679 554 480 429 392 363 340 320 304 290 277 266 257 248 240 

5.5 983 695 568 492 440 402 372 348 328 311 297 284 273 263 254 246 

6 1005 711 580 503 450 410 380 355 335 318 303 290 279 269 260 251 

6.5 1025 725 592 513 459 419 388 363 342 324 309 296 284 274 265 256 

7 1045 739 603 522 467 426 395 369 348 330 315 302 290 279 270 261 
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1.6 (a) 

 
 (b) 

 
 (c) 

 

The uncoloured (white) region shows 

the habitable zone. 

(d) Lehel: 

0.8 1 0.8 2 0.6 0.12M D        

Water freezes, it is not in the habitable 

zone. 

Hades: 

1.2 2 1.2 0.5 1.4 0.18M D       

Water boils away, it is not in the 

habitable zone. (moreover, 

3.3 2 3.3 0.5 0.35 1.3M D       , 

so it has captured rotation.) 

Oceania: 

0.8 2 0.8 2 0.4 0.12M D      ,  

1.2 2 1.2 2 0.4 0.18M D      

3.3 2 3.3 2 4.6 1.3M D       

none of the inequalities holds.  

Oceania is in the habitable zone of its 

star. It orbits around it far enough to 

have a different orbital and rotational 

period, so on the planet days and 

nights change each other. The surface 

temperature is also suitable for the 

permanent existence of liquid water. 

 

1.7 (a) The boiling point of water 

(under Earth-like conditions) is 373 K: 

inner

700000
373 0.6 5770K

d
  

7

inner 6.0 10 60d     million km 

The melting point of ice (under Earth-

like conditions) 273 K: 

outer

700000
273 0.6 5770K

d
    

8

outer 1.1 10 110d    million km 

Water can exist in liquid state on 

planets that orbit at a distance not 

smaller than 60 million km and not 

greater than 110 million km from the 

star. 

(b) No. The model forming the basis of 

the formula does not take the effect of 

the atmosphere into account. 
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(c)  
70 700000

0.6 7200T
d


    

inner

70 700000
373 0.6 7000K

d


    

9

inner 6.2 10 km 41 AUd     

This is approximately Pluto’s mean distance 

from the Sun. 

outer

30 700000
273 0.6 7200K

d


    

10

outer 1.2 10 km 77AUd     

More than twice Neptune’s orbital radius 

(30 AU). Based on these data Canopus’ habitable 

zone would be outside the orbit of each planet of 

the Solar System. 

 

 

1.8 0.2 0.8 AUc a   

3.2 3 AUa c   ,  

so the planet is never inside the inner boundary 

of the habitable zone. 

The distance of the outer boundary of the 

habitable zone is equal to the semi-major axis, so 

the planet crosses the outer boundary of the 

habitable zone at the endpoints of the semi-minor 

axis. 

The areal velocity of the planet is constant, so we 

need to calculate what percent of the area of the 

ellipse is the area of the smaller sector bounded 

by radii FA and FB. 

The area of the sector is the area of the half 

ellipse minus twice the area of triangle OFA: 
















e

a

ca

c

ab

bc
ab

2

1

2

122

0.2
0.5 0.44 44%


     

 
 

1.9 (c) 
2

324

T

r
M




 

2 9 3

11 2

4 (5 10 )

6.7 10 (1.7 24 3600)





 

   
 

303.4 10 kg   

Approximately one and a half times the Sun’s 

mass, so it is a star similar to the Sun. 

The exoplanet orbits well inside Mercury’s orbit. 

(b) 27 27

atmosphere 0.5 3 1.9 10 2.9 10 kgm        

71 year 3.1 10 s  . 

In one year the planet loses 
9 7 175 10 3.1 10 1.6 10 kg      of matter, so it loses 

its atmosphere completely in 

 
27

10

17

2.9 10
1.8 10 years

1.6 10
t


  


,  

that is, in 18 thousand million years. 

Remark: 

The rate of matter loss of the exoplanet seems to be huge 

but the received result, 18 thousand million years is more 

than the age of the Universe. With a few exceptions planets 

can live longer than their stars (lifespan of about 10‒20 

thousand million years) despite such huge matter loss. 

 

1.10 Kepler’s third law states the relationship 

between the orbital period (T) and the length of 

the semi-major axis (a) of the orbit of a(n) 

(exo)planet (of mass mb) orbiting around a star 

(of mass Ms) is 
3

s b

2 2

( )

4

M ma

T






 , 

If two exoplanets have masses m1 and m2, then 

the ratio of the squares of the orbital periods is 
32

s 2 11

2 3

2 s 1 2

( )

( )

M m aT

T M m a





 

It is reasonable to relate masses to the same 

celestial body, for example Jupiter (although the 

concrete values can be calculated because 

Jupiter’s mass is given, they are not important for 

the exercise). The Sun’s mass is 1047 times 

Jupiter’s mass, mJ and Jupiter’s mass is 318 times 

Earth’s mass, mF.  

The mass of star GJ 876 is therefore 

MGJ876 = (0.33 ± 0.03)∙MSun = 

= (345.5 ± 31)∙mJ  

The mass of exoplanet GJ 876d (hereinafter 

simply d) is 

md = 6.8mE = 0.0214mJ,  

and the mass of exoplanet e is 
B

A

F

b

ac O
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me = 15mE = 0,047mJ,  

The combined mass of the exoplanet and the star 

can be approximated well with the mass of the 

star, so our formula simplifies to the form known 

by high school students: 

3

2

3

1

2

2

2

1

a

a

T

T
  

The known exoplanets of star GJ 876 follow each 

other in the following order of increasing 

distance from the star: d, c, b and e. This order is 

established from the semi-major axes of the 

exoplanet orbits. (The exoplanets receive the 

small letters after the name of the star in the order 

of their discovery, starting from letter b.) 

The ratio of the orbital periods of exoplanets c 

and d is 
3

c

3

d

31.68c

d

T a

T a
  , 

which cannot be written as the ratio of small 

integers. 

If the orbital period of exoplanet b or e is related 

to the orbital period of d, an even higher number 

is acquired, so these ratios are not worth 

calculating.  

Similarly to the above, the ratio of the orbital 

periods of b and c is 
3

b b

3

c c

2.04
T a

T a
  , 

which can be approximated with a resonance of 

ratio 2:1.  

We also have to investigate the ratio of the orbital 

periods of exoplanets e and b: 
3

e e

3

b b

2.03
T a

T a
  , 

which also corresponds to a resonance of 2:1, 

similarly to the previous one.  

From these two resonances it follows that 

exoplanets e and c are also in resonance with a 

ratio 4:1.  

 

So in the planetary system of star GJ 876 three 

planets are in resonance (Tc:Tb:Te = 1:2:4). For 

checking, the measured orbital periods (given in 

the exoplanet catalogue) are 30.23 days, 61.03 

days and 124.69 nap, which agree with our 

results. 

Such resonance can also be found in our Solar 

System, albeit not between planets, but between 

Jupiter’s three inner Galilean moons 

(TIo:TEuropa:TGanymede = 1:2:4, their orbital periods 

are 1.77 days, 3.55 days and 7.16 days, 

respectively). 

 

1.11 (a) The following table contains the data 

to be drawn: 

Planet Distance 

(cm) 

Diameter 

(mm) 

Gliese-581b 4 10 

Gliese-581c 7 4 

Gliese-581d 22 5 

Gliese-581e 3 3 

Gliese-581f 76 5 

Gliese-581g 15 4 

With the requested scale Gliese-581f would not 

fit on many paper sizes, so either we do not draw 

it or we choose another scale based on the size of 

the available paper. 

 

The next figure shows the planetary system 

Gliese-581 to scale except for planet f. The star 

is on the left, at the beginning of the ray. 

 

 
            e    b              c                            g                                     d 

 

(b) 

r3 (AU3) T2 (day2) 

0.000069 28.8 

0.00037 166 

0.011 4480 

0.000022 9.692 

0.44 187000 

0.0034 1340 
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Plotting these data with the exception of planet f, 

the slope of the straight line is 

4.07∙105 day2/AU3 = 9.00∙10−19 s2/m3. 

From Kepler’s third law this is equal to 
M

 24
,  

so M = 6.6∙1029 kg.

 

 

 
 

1.12 (a) The radius of Kepler-10b is 
6 61.4 6.37 10 8.9 10 mKR       

 3

3

4
RV 

  
3

6 21 34
8.9 10 3.0 10 m

3
      

 VM 

 
3 21 258.8 10 3.0 10 2.6 10 kg       

(b) The gravitational acceleration on its surface 

is 

 

11 25

22 26

6.67 10 2.6 10 m
22

s8.9 10

M
g

R

   
  


,  

more than twice that on Earth. 

(c) On Earth: 60 9.8 588Nmg     

On exoplanet Kepler-10b: 

N13002260 mg  

 

 

  

y = 406559x - 3.4773

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0,002 0,004 0,006 0,008 0,01 0,012
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2. Exoplanet search methods 
THE TRANSIT METHOD 
 

 

2.1 The picture shows Mercury’s transit in front of the Sun on 8 November 2006. It can be observed 

that Mercury’s black disc reduces the Sun’s bright area. This means that when observed from Earth, the 

Sun fades slightly during Mercury’s transit.  

(a) The Sun’s radius is 696,000 km, Mercury’s radius is 2,440 km. By what percent does the bright area 

of the Sun’s disc decrease upon Mercury’s transit, if we neglect the fact that Mercury is closer to us than 

the Sun? 

 

 
Mercury’s transit in November 2006 (NASA) 

(b) How does the above result change if we also take the difference in distance into account? Calculate 

with a mean Mercury-Sun distance of 0.4 AU. 

(c) A distant astronomer observes the Solar System. Because of the great distance he/she cannot see the 

Sun’s disc with his instruments but when one of its planet transits in front it, its brightness still decreases. 

By what percent is the bright area of the Sun’s disc reduced if Earth’s disc or Jupiter’s disc transits in 

front of it? 
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2.2 NASA's Kepler Space Telescope, which was launched in 2009, has been observing about 150,000 

stars for several years. The Kepler Space Telescope measured the brightness of the stars with high 

accuracy to reveal the slight decrease in the brightness caused by exoplanets passing in front of them. 

The graph is a light intensity curve showing the transit of a large, Jupiter-like exoplanet. The vertical 

axis shows the relative decrease in the brightness of the star, the horizontal axis shows the time of the 

transit. 

In how many hours does the planet pass completely in front of the star? 

 
Remark:  

Why should the star’s brightness be measured with space telescopes? The following figure shows the light intensity curve of 

star HAT-P-7 using the measurement data of a terrestrial telescope (top curve) and the Kepler Space Telescope (bottom 

curve). The inaccuracy of terrestrial data is primarily caused by atmospheric disturbances. 

 
(NASA Ames Research Center) 

HATNet, that is, Hungarian Automated Telescope Network, a network that consists of small, 11-cm diameter astronomical 

telescopes has discovered almost one hundred exoplanet systems including the one above. It was created by Gáspár Bakos 

and several Hungarian astronomers work in the program. 

 

 

2.3 The mass of a star in the Pegasus constellation named WASP-10 by the planet searchers 

(unobservable to the naked eye) is 0.8 times the Sun's mass. Fortunately the planets orbital plane does 

not enclose a large angle with our direction of view, so we can witness transits. 

The next figure shows the light intensity curve of the star: it shows the apparent brightness m of the star 

as the function of time. The higher the value of m, the dimmer the star. If m increases by a given value, 

the luminous intensity of the star decreases by the 0.3981 raised to the same value. 

(a) By what percent does the luminous intensity of WASP-10 decrease during the transit of the 

exoplanet? 
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(b) Determine the ratio of the radius of the planet R to the radius of the star R from the given light 

intensity curve. 

(c) Read from the diagram the ratio of the time spent by the complete planet in front of the star to the 

time of the transit. 

http://var2.astro.cz/ETD/ 

 

(d) From the durations and the ratio of the radii determine “how far” from the centre of the star, in terms 

of the radius of the star, the planet passes. That is, find the value of x. 

 
 

  

R

∙x

O

CBA

http://var2.astro.cz/ETD/
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2. Exoplanet search methods 
THE DOPPLER METHOD 
 

 

2.4 If the distance between a source emitting light of wavelength λ and the instrument detecting it 

changes, then the wavelength measured by the instrument is shifted by Δλ relative to value measured by 

the instrument if the source is stationary. The relative change in wavelength is equal to the ratio of the 

speed of approach or recession v and the light speed c (if v is much smaller than c): 

c

v







 

The figure shows a small part of Arcturus’ near infrared spectrum, which has characteristics very similar 

to the Sun’s spectrum. Find Arcturus’ radial speed (speed in the direction of view). Is it approaching or 

receding? 

 
http://cas.sdss.org/dr7/en/proj/advanced/spectraltypes/ 

 

 

2.5 Estimating the order of magnitude: 

(a) Find the radius of the Sun’s orbit around the centre of gravity of the Sun-Jupiter system. 

(b) Find its orbital speed. 

(c) A distant astronomer observes the Sun from a distance of 10 pc. He/she uses a supersensitive 

spectrograph that can detect a Doppler shift Δλ/λ of one millionth. Can he/she discover Jupiter? 

(d) How (in what direction) should Jupiter’s mass and/or its orbital radius change so that the distant 

astronomer gets a chance to discover it? 

 

 

 

http://cas.sdss.org/dr7/en/proj/advanced/spectraltypes/
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2.6 Many of the planets found outside the Solar System were detected using the Doppler method: the 

gravitational attraction of the planet causes changes in the speed of the star. If the motion has a radial 

component (in the direction of observation) then the spectral lines of the star are shifted relative to the 

spectral lines of the stationary gas used as a reference. 

The mass of star WASP-10 in the Pegasus constellation (invisible to the naked eye) is 0.8 times the Sun's 

mass. The following figure shows the changes in the speed of the star due to its planet WASP-10b. As 

shown in the figure, the period of the speed fluctuation is 3.1 days (corresponding to value 1.0 on the 

horizontal axis). 

 
(a) Estimate the orbital radius from Kepler's Law. Compare with the Sun-Earth distance. 

(b) Read the amplitude of the speed fluctuation in the diagram. What was the maximum relative Doppler 

shift of the star's spectrum from which this data was acquired? (And even smaller values can be 

measured!) 

(c) From the amplitude of speed fluctuation, give a lower estimate of the planet's mass and compare it 

to Jupiter's mass. Why is the result only a lower estimate? 

 

 

2.7 The graphs show the measured change in the radial speed of a distant star as a function of time. 

What can cause the deviation from the sine curve? 

(a)       (b) 
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2.8 The following table shows the measured values of the speed of star Pegasus 51 in the Pegasus 

constellation as a function of time measured in days. (The inaccuracy of the speed values is only about 

± 5 m/s.) 

Remark: 

51 Pegasi b was the first exoplanet discovered that orbits around a star similar to the Sun. 
 

 

Time (day) Speed (m/s) 

0.62 56 

0.71 67 

2.60 -35 

3.64 -33.5 

3.82 -23 

6.65 -23 

7.61 -44 

7.66 -34 

8.61 25 

8.75 41 

9.60 61 

10.66 -2.5 

10.71 1 

10.75 -5 

11.69 -39 

12.61 3 

(Data taken from: Marcy, G. W., Butler, R. P., Williams, E., Bildsten. L., Graham, J. R., Ghez, A. M., & Jernigan, J. G. 1997, 

Astrophysical Journal, 481, 926) 
 

(a) Plot the speed of the star as a function of time and determine the orbital period of the planet. 

(b) Find the length of the semi-major axis of the orbit in AU assuming that the mass of Pegasus 51 is 

equal to the mass of the Sun. 

(c) Give an estimate of the mass of the planet. Compare it to the mass of Earth and Jupiter. 
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2. Exoplanet search methods 
ASTROMETRIC METHOD 
 

 

2.9 Somewhere in the Galaxy, an astronomer looking for planets observes the Sun. Find the distance 

of the most distant astronomer who can have the a to conclude Jupiter's presence from the Sun's wobbling 

if the smallest wobbling that can be detected with his/her instruments is in the magnitude 10-4 arc 

seconds? (The effect of the other planets is neglected, as the vast majority of the mass of the Solar System 

outside the Sun is concentrated in Jupiter. You can also assume that its orbit is a circle.)  

 

2.10 (Based on a Student Olympiad preparatory course problem) 

The accuracy required to detect the wobbling of stars has not been available until now, so for the time 

being, we know only a few exoplanets discovered using astrometry. 

The Gaia Astrometry Satellite was launched by the European Space Agency (ESA) in December 2013. 

The space telescope orbits around the Sun on Earth's orbit, its aim is to measure the exact data of the 

stars in the Milky Way. Within the frame of the Gaia mission, hundreds of thousands of exoplanet 

discoveries are expected in the coming years. In addition, exoplanets within a distance of about 1,600 

light years (long-period gas giants) will be discovered with this method, which could not be found by 

other methods.  

(a) The space telescope is able to detect a change of 2 × 10-5 arc-seconds in the direction of the stars. If 

such a change can be observed in the direction of a star at a distance of 1,000 light-years, what is the 

orbital radius in AU of the star around the centre of gravity of the system consisting of the star and its 

planet? 

(b) The size of Gaia's main mirror is 1.5 m × 0.5 m. The light falling on the mirror is collected by the 

1-gigapixel detector whose size is 0.5 m × 1 m. Estimate the number of photons arriving from the star 

on the detector in one second. 

 

 

2.11 The astrometric method, which is becoming more and more applicable in the exploration of 

exoplanets, is easier to study when we deduce from the star's own movement a partner not of smaller, 

but of larger mass. 

The first seven images of the following series of images show the same region of the sky (the small cross 

marks the middle) at several times during the ten years from 1992 to 2002. The star marked with red is 

visibly changing its position. Based on the distance of the star, the change of position is about 10 light-

days. The eighth image shows the identified positions of the star during the ten years in magnification 

(with the estimated error of measurement). The points clearly form an ellipse, the star is orbiting around 

something that does not appear in the images. 

(a) Find the displacement compared to the size of the Solar System: compare the displacement of the 

star with the diameter of Neptune's orbit. 
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http://astronomie-smartsmur.over-blog.com 
 

(b) The plane of the elliptical orbit is not necessarily perpendicular to our direction of view, so because 

of the perspective the direction of the major axis is not necessarily what we see as the greatest extension 

of the ellipse. However, based on Kepler's law of areas, it is possible to determine the centre of attraction 

around which the star is orbiting. This object received the name Sagittarius A * (Sgr A *) from the Latin 

name of the constellation, Sagittarius, its position is marked by the cross in the figure below. Assuming 

that the length of the major axis is 10 light-days, give an estimate of the mass of Sagittarius A* based 

on the figure. 

  
http://astronomie-smartsmur.over-blog.com 
 

(c) Give an upper estimate of the radius of Sagittarius A* based on the figure. 

 

  

http://astronomie-smartsmur.over-blog.com/
http://astronomie-smartsmur.over-blog.com/
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Solutions 2. 
 

2.1 (a) The percent of the dark area is: 
2 2

5M

2 2

S

2440
1.2 10 0.0012%

696000

R

R

     

(b) If the three celestial bodies are in the same 

line, then Mercury’s distance is 0.6 times the 

Sun’s distance.  

If Mercury was at the same distance as the Sun, 

it would cover 3
6,0

1
2
  times larger area, so the 

percent of the dark area is approximately three 

times the calculated value. 

Remark: 

If Mercury’s disc is replaced by the Moon’s disc, the 

Moon’s disc covers the Sun completely, causing a total 

solar eclipse. The other extreme is when the star and its 

planet are so far from the observer that the difference in the 

distance is truly negligible: this is the situation when the 

transit of an exoplanet is observed in front of its star. 

(c) Earth:  
2 2

5E

2 2

S

6370
8.4 10 0.0084%

696000

R

R

     

Jupiter: 
2 2

J

2 2

S

71500
0.0106 1.1%

696000

R

R
    

 

2.2 Approximately 0.12 hours. 

 

2.3 (a) The approximate change in magnitude 

as read from the figure is Δm = 11.941 – 11.912 

= 0.039. 

The relative change in magnitude is 

1 – 0.39810.039 = 1 −0.965 = 3.5%. 

(b) Expressed from the ratio of the covered area: 
2

2 2

2
1 0.965

R R R

R R

 
    

 
   

, 

so 0.19
R

R




. 

(c) The duration of the horizontal part, t2 should 

be divided by the total duration of the decrease, 

t1. This can be done by measuring these values in 

the figure with a ruler. It is a rough estimate, 

because it is difficult to decide where the curve 

breaks. 

2

1

55
0.63

88

t

t
  . 

(d) Based on the figure, the distances covered in 

times t1 and t2 are 2AC and 2BC, expressing their 

squares from Pythagoras’ theorem and dividing 

them by each other: 

 


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


























  

 

 

2 2

2

2 2

1 0.19
0.63

1 0.19

x

x

 


 
 

2 20.562 0.63 0.656x x    

x = 0.48 ≈ 0.5 

 

2.4 The Sun’s distance does not change. If on 

the horizontal axis of the graph the distance 

between the marks is 2.5 cm, then the shift in the 

spectral lines is 0.8 cm, which corresponds to 

Δλ = +0.16 nm on the scale.  

(There is no noticeable difference between the 

shift of the three lines, so let us consider the one 

in the middle.)  

The speed 

80.16
3.0 10 54 km / s

883.84
v c






       

In Arcturus’ spectrum the wavelengths are 

longer, so it is moving away from us. 

 

2.5 (a) The mass ratio of the Sun and Jupiter is 
30

27

2.0 10
1000

1.9 10





, 

R

∙x

R
+ R

R
 –
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O
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so the centre of mass is approximately one 

thousandth of Jupiter’s orbital radius from the 

Sun’s centre.  

 

The requested radius is therefore 

0.001r = 0.001·7.8·1011 m ≈ 8·108 m. 

 

(b) Jupiter’s orbital period is approximately 12 

years, so 
8

8

2 2 8 10
13 m / s

1.9 10

r
v

T

   
  


 

(c) The Doppler shift due to Jupiter is only 

68

8
101104

103

13  





c

v




, 

which cannot be detected. 

 

2.6 (a) The period of the speed fluctuation is the 

orbital period of the planet, so 
53.1 24 3600 2.7 10 sT      . 

If M >> m,  











3/1

2

2

4

MT
r  

1/3
11 30 5 2

2

6.67 10 0.8 2.0 10 (2.7 10 )

4

      
  
 

105.8 10 m 0.04 AUr    . 

(b) The amplitude of speed fluctuation is 

approximately 

vmax = 510 m/s. 

6max

8

510
1.7 10

3.0 10

v

c






   


. 

(c) The orbital radius of the star around the centre 

of mass of the system is 

r
M

m
r

mM

m
r 


'  

r
MT

m

T

r
v 

 2'2
max ,  

so from exercise part (a) 
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   
  

  
27

Jup6.1 10 kg 3.2 m m    

It is only a lower estimate because we do not 

know the plane of the orbit of the orbiting planet. 

The maximum radial speed is the same as the 

actual speed only if the observer is in the plane 

of the orbit. If the plane encloses an angle with 

the direction of view, the detected speed is less 

than the actual speed. 

 

2.7  

(a) Several planets orbit around the star. 

(b) The orbit of the planet is highly eccentric. 

 

2.8 (a) The drawn points should be on a sine 

curve, but the graph does not show a noticeable 

periodicity. There is a maximum somewhere 

between 1 and 2 days, there is no data at the next 

maximum, then there is a peak somewhere 

between 9 and 10 days. Based on this we can try 

a 4-day period: consider day mod 4. 
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Time 

(day mod 4) 

Speed 

(m/s) 

0.62  56 

0.71  67 

2.60 -35 

3.64 -33.5 

3.82  -23 

2.65  -23 

3.61  -44 

3.66  -34 

0.61  25 

0.75  41 

1.60  61 

2.66  -2.5 

2.71  1 

2.75  -5 

3.69  -39 

0.61  3 

 

 

Period of 4 days: 

 
4.5 days 

 
4.25 days 

 
 

When trying slightly different periods, we find 

that 3.5 days give worse, 4.5 days give slightly 

better results. This is closer to a curve, but not a 

sinusoidal curve (we have found the period if the 

graph shows a single period of a sine function). 

Refining further, we can find that the period is 

about 4.25 days. 

(b) For a star whose mass is equal to the Sun's 

mass, the square of the period in years is equal to 

the cube of the semi-major axis in astronomical 

units. 

T = 4.25 days = 0.0116 years 
2/30.0116 0.0514 0.05 AUa     

So the planet orbits around its star at only one 

twentieth of Earth’s orbital radius. 

(Approximately one eighth of Mercury’s orbital 

radius.) 

(c) For the estimate, suppose that the orbit of the 

planet is circular. Then the speed of the planet is 

11

P

2 2 0.0514 1.5 10

4.25 24 3600

a
v

T

    
  

 

 s/m130000 . 

Suppose, furthermore, that we see the "edge" of 

the plane of the orbit, that is, the maximum speed 

read from the above graph is the speed of the star. 

The maximum value in the graph is 

approximately +65 m/s, the minimum is 

approximately -45 m/s, so the amplitude of the 

speed fluctuation is about 55 m/s. 

The speeds are inversely proportional to mass, so 

the mass of the planet is 

30star
P Sun

P

55
2 10

130000

v
m m

v
     

 kg108 26 . 

That is approximately 140 times Earth’s mass 

and a bit less than half of Jupiter’s mass. 
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2.9 The Sun’s mass is 2.0∙1030 kg, Jupiter’s 

mass is 1.9∙1027 kg, their distance is 7.8∙1011 m. 

The Sun orbits around the centre of mass of the 

system on an orbit whose radius is 
27

11

30

1.9 10
7.8 10 m

2.0 10

m m
r r

M m M


    

 

 87.4 10 m  , 

so its diameter is 1.5∙109 m. The given angle in 

radians is 

4 10

2

2
10 4.8 10 rad

360 60

   


, 

so the requested distance is in the magnitude
9

18

10

1.5 10
3.1 10 m 100 pc

4.8 10


  


. 

 

2.10 (a) The orbital radius is seen in an angle 

of 1·10‒5 angular seconds from a distance of 

1000 light-years. 

1000 light-year = 9.5∙1018 m,  

1·10‒5’’ = 4.8∙10−11 rad, so 
18 11 89.5 10 4.8 10 4.6 10 mr       . 

Remark: 

This result is already in the order of magnitude of the 

orbital radius of the Sun around the centre of mass of the 

Sun-Jupiter system. (See Exercise 2.9). 

(b) Consider the distant star to be similar to the 

Sun, then its luminosity is 4·1026 W, its intensity 

maximum is at the wavelength 500 nm, let us use 

the latter data to find the energy of a single 

photon: 
34 8

19

7

6.6 10 3 10
4 10 J

5 10

hc
E








  
   


 

The number of photons emitted per second is 

45101
E

L
 

This number of photons is distributed on a sphere 

whose radius is 9.5∙1018 m, the detector only 

detects the fraction that passes through the 

0.75-m2 mirror of the telescope: 

45

18 2

0.75
1 10 660000

4 (9.5 10 )
  

 
 photons. 

 

2.11 (a) Neptune’s orbital radius is 30 AU. Its 

diameter is 60 AU = 0.35 light-days, the 

displacement of the star is approximately 30 

times this value. 

(b) The length of the semi-major axis is 

a = 5·24·3600·3·108 = 1.3·1014 m. 

The time belonging to the position at one of the 

endpoints of the major axis is 2002.33 years. 

Before that, the time belonging to the other 

endpoint is approximately 

1994.32 1995.53
1994.9 years

2


  

The difference is 7.4 years, that is, the orbital 

period is about 15 years = 4.7·108 s. 

22

3

4

M

T

a
  

2 3 2 14 3

2 11 8 2

4 4 (1.3 10 )

6.7 10 (4.7 10 )

a
M

T

 

 

 
  

  

 kg106 36  

This is three million times the Sun’s mass. 

(c) The star orbiting around it approaches object 

Sagittarius A* to approximately 0.5 light-days = 

1.3·1013 m, that is, less than 90 AU. So it is 

definitely smaller than that.  

Remark: 

An object of such a large mass compressed in such a small 

space cannot be else than a black hole. 
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3. Cosmic research and its tools 
NEAR-EARTH ASTEROIDS AND OTHER TINY CELESTIAL 

BODIES 
 

 

3.1 On 14 February 2013, a 10,000-tons meteor struck into the atmosphere at a speed of 18 km/s. It 

exploded above the city of Chelyabinsk in Russia; the detonation caused considerable damage and about 

one thousand people were injured due to glass shatter from the windows broken as a result of the shock 

wave. (Many witnesses made several videos about the event)  

(a) How many kilotons of TNT is the energy of the Chelyabinsk meteor equivalent to, if 1 ton of TNT 

provides 4.2∙109 J? 

(b) According to statistics, on average two objects larger than 4 metres arrive on Earth's entire surface 

per year. 72% of Earth's surface is covered by oceans and only 3% of the land is inhabited. In how many 

years can we expect to hear about the impact of such a large meteor in the news? 

(c) Fireballs are meteors that create a bright strip behind them in the sky that is visible from an area of 

approximately 100 km2. If the event is accompanied by a sonic boom as well, it is called a bolide. The 

mass of a bolide is at least half a kg. It is estimated that about 50,000 pieces of such objects fall on the 

entire 500 million km2 surface of Earth. Approximately how many bolides can you see in your life with 

your own eyes? 

  
Right: The super-bolide of Chelyabinsk http://spacemath.gsfc.nasa.gov, Left: Lake Manicouagan (Google Earth) 
 

 

3.2 The following empirical formula can be used to calculate the diameter D (in km) of a crater formed 

by the impact of a meteorite with energy E (in joule): 
5 0.2941.96 10D E    

(a) Find the size of the crater created by a meteorite weighing 5∙109 kg striking at a speed of 20 km/s. 

(b) Manicouagan Lake, located in Québec, Canada (5km in diameter), was formed in the middle of a 

100-km-diameter meteor crater created 214 million years ago. How many kilotons of TNT equivalent 

energy was released in the impact if 1 kiloton of TNT is equivalent to 4.2∙1012 J? 

 

 

3.3 The brightness of an asteroid or comet seen from Earth depends on many factors. Some factors are 

its size, its albedo, its distance from the Sun and the time of observation, since it is important whether it 

is seen from the fully illuminated side (like a full moon) or a partially illuminated side. 

Taking into account the many variables, the following empirical formula was found to be useful in any 

part of the solar system. (It is assumed that the albedo of the asteroid is like that of moon rocks.) 
/50.011 10 mR d     

http://spacemath.gsfc.nasa.gov/
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where R is the size of the asteroid in metres, d is its distance from Earth in kilometres and m is the 

apparent brightness of the asteroid seen from Earth. The smaller the value of m, the brighter the object. 

In the case of objects just visible to the naked eye, m ≈ 6. 

(a) An asteroid will get closest to Earth in 2027. Then its distance will be 37,000 km. State a numerical 

formula for the relationship between its size R and its apparent brightness m. 

(b) Will the asteroid be visible if its size is between 200 m and 1000 m? 

 

 

3.4 On 4 July 2005 the Deep Impact space probe approached the core of comet Tempel 1 to 500 

kilometres. The Impactor projectile forming part of the space probe, finally struck into the comet. The 

first image shows the flash of light and the outflow of gas upon impact. 

(a) The width of the second image (compiled from the images taken by Impactor) is 8.0 km. Find the 

approximate size of the core of the comet in km. Find the size of the craters that are on the right of the 

picture. Which are the smallest, barely detectable details of the image? 

(b) The Impactor projectile hit the comet in the position indicated by the arrow b. What inaccuracy in 

its path would have prevented the encounter? 

  
http://spacemath.gsfc.nasa.gov 
 

 

3.5 (a) The core of comet Tempel 1 has an average density of 400 kg/m3, and can be approximated 

with a sphere of radius 3 km. Find its mass. 

(b) A crater was formed at the place of impact of the 362-kg probe that was moving at a speed of 

10.3 km/s, and about 10,000 tons of material was ejected. If the Impactor hit the comet core 

perpendicularly to its path, what perpendicular velocity component was gained by the comet core? 

(c) Imagine that this comet moves towards Earth and is calculated to strike it 50 years later. A 10 megaton 

TNT equivalent nuclear bomb is launched to explode when it hits the comet. When the spacecraft 

carrying the bomb arrives, there are still 20 years remaining from the 50 years. The explosion would 

transfer as much impulse to the comet as if the Impactor that hit it at a speed of 10.3 km/s had a mass of 

7.5∙108 kg. 

Assuming that the core of the comet does not crumble into dust, but remains together, by how much is 

it diverted from its track in 20 years? Can collision with Earth be prevented this way?   

http://spacemath.gsfc.nasa.gov/
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3. Cosmic research and its tools 
INTERPRETATION AND APPLICATION OF DATA PROVIDED 

BY SPACECRAFTS 

 
 

3.6 In March 1987, a supernova explosion was observed in the nearby galaxy of the Large Magellanic 

Cloud, which is 160,000 light years from the Milky Way. Judging from the location of the explosion, 

the blue super-giant Sanduleak-69º 202a (shortly SK-69), whose mass is 20 times that of the Sun, became 

a supernova. The following sequence of images shows an expanding gas cloud at a temperature of about 

one million degrees, these were taken by the Chandra X-ray telescope between January 2000 (top left 

image) and January 2005 (bottom right image). 

Find the average speed of the expansion if the width of each image is 1.9 light years. 

 
http://spacemath.gsfc.nasa.gov 

 

 

3.7 In 2017, the 40th anniversary of the Voyager-1 spacecraft, the man-made spacecraft that has gone 

furthest, is celebrated. Voyager-1 started its journey in 1977, it is moving away at a speed of 17 km/s 

and its communication system still works. 

(a) How far is it now? 

(b) How long will it take for it to cover the distance of the closest star? 

(c) Jupiter's moon Io, whose diameter is 3,630 km, is characterized by intense volcanic activity. The 

image taken by Voyager-1 shows the eruption of the Prometheus volcano. (Volcanoes are traditionally 

named after the gods in the myths of different peoples.) 

Based on the picture, give an estimate of how high the material thrown up by Prometheus rises. 

(d) Io's density is 3.55∙103 kg/m3 (close to the density of our Moon, 3.34∙103 kg/m3). At what speed does 

the material thrown up leave the volcano? 

http://spacemath.gsfc.nasa.gov/
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3.8 The two photos shown below were taken by the SOHO satellite that orbits on Earth's orbit at the 

times when it was nearest to (perihelion) and farthest from the Sun (aphelion). 

(a) When is it closest to and farthest from the Sun? 

(b) Use the photos to determine the percent by which the two distances deviate from the average.  

(c) If the average distance from the Sun is 149,600,000 km, how much closer is Earth at perihelion than 

at aphelion? 

 
http://spacemath.gsfc.nasa.gov 
 

 

http://spacemath.gsfc.nasa.gov/
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3.9 (a) The luminosity of the Sun is L = 3.9∙1026 W. Pluto is 31 AU from the Sun at perihelion and 

49 AU at aphelion. Pluto rotates around its axis. Find the temporal average of radiation intensity in W/m2 

reaching Pluto's atmosphere at perihelion and aphelion. 

(b) Before the New Horizons space probe passed near Pluto in 2015, little was known about Pluto's 

atmosphere. According to the data of the space probe, Pluto's atmosphere consists of methane and 

reflects 60% of light falling on it (i.e. Pluto's albedo is 0.6) and absorbs the rest. From this data we can 

estimate the temperature of the atmosphere. 

As the atmosphere is in a thermal equilibrium, the same amount of energy is emitted into space as 

absorbed. Find the absolute temperature T of the atmosphere at perihelion and aphelion if the intensity 

of the emission is σ∙T4, and the value of constant σ is 5.67∙10−8 W/(m2K4). 
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3. Cosmic research and its tools 
THE GEOMETRY OF MODERN SATELLITES 
 

 

3.10 The STEREO satellite pair is orbiting around the Sun. One is slightly inside Earth's orbit, the 

other is slightly outside. Thus, they can observe the same phenomenon simultaneously from two points 

at a large distance, from different angles, so they can form a 3-dimensional image of solar flares, storms, 

and other events occurring on or near the surface of the Sun. They can also be used to study the plasma 

clouds moving from the Sun towards Earth. Their distance, speed, shape, etc. can be determined. 

In the figure S is the sun, E is Earth, A and B are the two STEREO satellites and a plasma cloud C 

originating from a corona flare is approaching Earth. 

According to the measurements of satellite A, angle SAC is 45°, and according to satellite B angle SBC 

is 50°. 

At the moment of the measurement angle ASE equals 54° and angle BSE equals 48°. 

Earth's orbit can be considered as a circle of radius 150 million km, the orbital radius of satellite A and 

satellite B is 145 million km and 156 million km, respectively. 

(a) Determine distance CE and angle CSE. 

(b) If the plasma cloud originating from the solar flare is moving at a speed of 2 million km/h, how long 

does it take for it to cover the distance SC? 

 
 

3.11 The Juno space probe was launched in August 2011. Its initial elliptical orbit was designed to fly 

by Earth in October 2013 after a change of orbit using its rockets in August 2012. The gravitational 

attraction of Earth set the space probe on the elliptical transfer orbit around the Sun, where it could get 

close to Jupiter without requiring extra energy. (See figure.) The equation of the transfer orbit is 

 2 25.15 9.61 49.49x y   

where distances are given in astronomical units. 

(a) Calculate the length of the semi-major axis and the semi-minor axis of the orbit, the eccentricity of 

the orbit, and the distance at perihelion and aphelion. Give distances in AU. 
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http://spacemath.gsfc.nasa.gov 

 

(b) When did the space probe arrive at Jupiter? 

 

3.12 As the Juno space probe travelled towards Jupiter on an elliptical orbit around the Sun, the 

distance from the Sun gradually increased. As Juno produces electricity with solar cells, the available 

power decreased with increasing distance according to an inverse square law. At the distance of Earth, 

the power generated by the solar panels was 12,690 W. 

The distance r from the focus of an ellipse can be given as a function of the angle φ as follows: 

 
cos1

1 2






e

e
ar  

The length of the semi-major axis of space probe Juno is approximately 3.0 AU, its eccentricity is 

approximately 2/3. 

  
(a) Find the value of the angle φ where the generated power was one quarter of the power at a distance 

1 AU. 

(b) Find the generated power when the space probe arrived at Jupiter at the most distant point of its 

orbit.  

http://spacemath.gsfc.nasa.gov/
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3. Cosmic research and its tools 
INCREASING THE RESOLUTION OF DETECTION 
 

 

3.13 The angular resolution of an optical device is the smallest angular distance between two object 

points, where they can be identified as two separate points in the image formed by the device. For waves 

of wavelength λ entering through a circular aperture of diameter D, the angular resolution is 

1.22
D


   . 

(a) The diameter of the mirror of the Hubble Space Telescope is 2.4 m. Find its angular resolution for 

the wavelength 550 nm. 

(b) How far could a Sun-sized star be so that Hubble could distinguish it from a point light source (that 

is, detect it as an extended light source)? Can Hubble be used to see the disk of stars of the same size as 

the Sun? 

(c) Betelgeuse (α Orionis) is 1200 times the size of the Sun and it is 430 light-years away. Can we see 

Betelgeuse's disk using Hubble? 

 

 

3.14 The following two photos were taken of the place of Apollo-15's landing on Moon. (Around the 

centre of the second image the horizontal shadow of the Apollo-15 landing unit can also be seen.) 

(a) Which photo was taken by the Japanese Kaguja satellite (resolution: 10 m/pixel, aperture size: about 

15 cm) and which by the Lunar Reconnaissance Orbiter (LRO) satellite (resolution: 1.0 m/pixel, aperture 

size: 0.8 m)? 

   http://spacemath.gsfc.nasa.gov 

(b) The height of the orbit of the LRO satellite was 50 km. At what height above the surface of the 

Moon did the Kaguja satellite take the photo? 

 

 

3.15 (a) Find the diameter of the antenna of a radio telescope sensitive at a wavelength of 21 cm if its 

angular resolution is equal to that of a mirror telescope with a diameter of 15 cm.  

Remark: 

A radio telescope of that size is obviously impossible to build. However, the desired resolution can be achieved using 

interferometry, i.e. placing two smaller radio telescopes at a distance of such magnitude. 

(b) Two radio telescopes placed in the east-west direction, interconnected as an interferometer and set 

for receiving radio waves of wavelength 550 nm are directed at the meridian. The distance d (baseline) 

of the two antennas is one thousand times the wavelength. 

As Earth slowly rotates, the phase difference of the signals arriving at the two antennas from a given 

radio source changes. As the source slowly passes through the field of vision of the telescopes, the 

electronic superposition of the signals received by the two antennas results in a pattern of constructive 

and destructive interferences. 

http://spacemath.gsfc.nasa.gov/


 39 

Find the accuracy of the instrument in determining the direction of the source, i.e. find the size of angle 

α in the figure. 

 
(c) How does the resolution change if the two antennas are not directed at the meridian? 

(d) The figure shows the superposed signal from two different sources. In the first case, there are places 

of cancellation between the maxima, while in the second case the sum is non-zero at the minima. What 

can be the difference between the two sources? 

 

 

3.16 (a) Find the maximum possible resolution of the radio telescopes operating at Onsala (Sweden) 

and Amherst (USA, Massachusetts State, to 2011) being 2900 km from each other on a straight line used 

as a very long base interferometer (VLBI) at 22 GHz frequency. 

(b) Find the diameter of an optical telescope with the same resolution. 

 

 

3.17 Find the maximum resolution available with a 5,000 km-baseline radio interferometer operating 

at 5 GHz frequency. 
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Solutions 3. 

3.1 (a)  2

2

1
mvE  

2 151
10000000 18000 1.6 10 J

2
      

It is equivalent to 386 kilotons of TNT. (About 

10 small nuclear bombs.) 

(b) The inhabited area is only 0.8%, that is, 1/125 

of the whole Earth. With two such events per year 

the probability is 1/62, so it happens about once 

in 62 years, that is, once, maybe twice in a human 

lifetime. 

(c) A bolide arrives on an inhabited area with a 

probability of 1/125, which is 400 out of the 

50,000 per year. In order to see it, we have to be 

in the appropriate 100-km2 area. This area is 

1/500,000 of the surface of the whole Earth, or 

1/40,000 of the inhabited area. 400/40,000 = 100, 

so each year we have a 1 percent chance on 

average. That is, if we watch the sky in our whole 

life, we can see such event once every 100 years 

on average. 

 

3.2 (a)  

2 9 2 181 1
5 10 20000 1.0 10 J

2 2
E mv        

5log log(1.96 10 ) 0.294 logD E     
5log log(1.96 10 ) 0.294 18 0.584D     

 D = 3.8 km 

(b)  5log log(1.96 10 ) 0.294 logD E     
5log100 lg(1.96 10 ) 0.294 log E     

6.71 0.294 log E   

log 22.8E   
226.54 10 JE    

It is equivalent to 1.6∙1010 kilotons of TNT. 

 

3.3 (a) R(m) = 0.011·37 000·10‒0.2m = 

= 407·10‒0.2m  

 

(b) log 0.2 log 407 0.2 2.6R m m       

log 2.6
13 5log

0.2

R
m R


  


 

If 200 < R < 1000, then 

2.3 < logR < 3 

1.5 > 13 ‒ 5logR > ‒2 

Yes, it is clearly visible. 

 

3.4 (a) If the horizontal size of the image is 

16 cm, then 1 cm is equivalent to 500 m. The 

largest size of the core of the comet is about 

14 cm, that is, 7 km, in the perpendicular 

direction it is 11 cm, that is, 5.5 km. The size of 

the craters is 8 mm, that is, 400 m. Details with 

size of about 1 mm, that is, 50 m are still visible. 

(b) If its path had run 2 cm to the right in the 

photo, then it would have missed the core. It 

allows for an inaccuracy of only 1 km. 

Remark:  

As its distance from Earth is about one hundred million km, 

its path had to be determined with a relative error less than 

one hundred millionth. 

 

3.5 (a)  3

3

4
RM   

3 134
400 3000 4.5 10 kg

3
      

(b) The change in mass is negligible compared to 

the mass of the core of the comet. Using the law 

of conservation of momentum: 

'Mvmv   

13

362
' 10300

4.5 10

m
v v

M
   



 88.2 10 m/s 2.6 m/year    

(c) Now  
8

13

7.5 10
' 10300

4.5 10

m
v v

M


   


 ' 0.17m/s 5400  km/yearv    

it is 108,000 km in 20 years. Earth’s diameter is 

only 13,000 km, so collision can be avoided. 
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3.6 If the width of the photos is 38 mm, then 

1 mm corresponds to 0.05 light-year. In the first 

photo the width of the cloud is 25 mm, in the last 

one it is 37 mm, so the increase in the diameter is 

12 mm, the increase in the radius is 6 mm. It 

gives an expansion of 0.3 light-years in 5 years, 

so the average speed is 3/50 of the speed of light, 

that is, about 1.8·107 m/s. 

 

3.7 From 1977 to 2017 40 years passed. 

(a) s = vt = 40·365·24·3600·17000 =  

= 2.1·1013 m = 140 AU 

(b) The speed of the probe is 5.67·10‒5c,  

the closest star is at a distance of 4.3 light-years. 

5

4.3
76000 years

5.67 10
t


 


 

(c) If the longest chord of the arc shown in the 

photo is 216 mm, then the height of the circular 

segment is 7.2 mm. 

 
2 2 2108 ( 7.2)R R    

From this equation R = 810 mm, which is 

equivalent to 1815 km. The height of the cloud is 

17.2 mm, that is, 

 
17.2

1815 39 km
810

   

(d) Io’s mass is 
3

4 3R
M


 

3 6 3
224 3.55 10 (1.82 10 )

8.9 10 kg
3

    
    

The gravitational acceleration on its surface is  


3

4
2

RG

R

GM
g



10 6
24 6.67 10 3550 1.82 10

1.8m/s
3

     
 

2

2

1
mvmgh   

2 2 1.8 39000 370 m/sv gh      

Remark: 

On Earth the maximum speed is around 100 m/s even in 

the case of the most intense volcanic eruptions (Krakatoa, 

St. Helens, etc.). It is likely that the volcanic activity on Io 

is partly a result of phenomena fundamentally different 

from the phenomena on Earth. 

 

3.8 (a) Perihelion on 4 January, aphelion on 

4 July. 

(b) If the greater diameter shown in the photo is 

122 mm, then the smaller one is 118 mm. The 

average is 120 mm. The deviation from the 

average is 2 mm, 2/120 = 1.7% 

Distance is inversely proportional to the apparent 

size, so the deviation is ±1.7%. 

(c) The difference is 

km000 000 5
120

118122
000 600 149 


  

 

3.9 (a) r1 = 31·1.5·1011 m = 4.7·1012 m,  

r2 = 49·1.5·1011 m = 7.3·1012 m,  

The luminosity of the Sun at distance r from it is 

24 r

L


 

Due to its rotation, the incident luminosity on 

Pluto’s surface is only one quarter of this value:  

216 r

L
I





 

I1 = 0.35 W/m2, I2 = 0.15 W/m2, 

Absorbed intensity = emitted intensity: 

0.4
4TI   

4
1 8

0.4 0.35
40 K

5.67 10
T




 


, 

4
2 8

0.4 0.15
32 K

5.67 10
T




 


. 

Remarks:  

1. In reality temperatures are a bit higher than these, the 

average value is about 50 K. 

2. The height of the atmosphere changes constantly, 

approximately proportionally with temperature. When 

methane gradually freezes on the surface, the height of the 

atmosphere decreases. 
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3.10 (a) In triangle ANB  

ANB= 54° + 48° = 102°.  

Using the cosine rule 

 102cos1561452156145AB 222
 

AB = 234. 

Using the sine rule in triangle NBA 

234

145
102sinNBAsin  . 

NBA  < 102°, so NBA = 37.3°. 

ABC  = 50° ‒ 37.3° = 12.7° 

Using the sine rule in triangle ABC 

sin12.7
AC 234 176

sin163


  


. 

Finding side CN of triangle ACN using the 

cosine rule: 

 45cos1761502176150CN 222
 

CN = 127 million km. 

Using the sine rule 

127

176
45sinANCsin   

ANC  < 102°, so ANC  = 78.5°. 

 
So the requested angle FNC is 

78.5° ‒ 54° = 24.5°.

Finding side CF in triangle FNC using the cosine 

rule: 
2 2 2CF 150 127 2 150 127 cos 24.5        

CF = 63 million km. 

(b) CN = 127 million km, the speed is 

2 million km/h, so it arrives at C in about 60 

hours. 

 

3.11 (a) 
2 2

1
9.61 5.15

x y
   

 3.1 AUa  ,  2.3 AUb   

 
2 2 2.1c a b   , e = c/a = 0.68. 

Perihelion: 3.1 −2.1 = 1.0 AU,  

aphelion: 3.1 +2.1 = 5.2 AU.  

That is, the distance of Earth and of Jupiter from 

the Sun. 

(b) According to Kepler’s 3rd law (distances 

measured in astronomical units, periods in years) 

 3/2 3/23.1 5.5 yearsT a    

It was at the distance of Earth in October 2013.  

It arrived at Jupiter half period, that is, 2 years 

and 9 months later, in June or July 2016. 

 

3.12 (a) 
cos1

1 2






e

e
ar ,  

Using the data of the probe 




cos23

5

cos
3

2
1

9

5

3






r  

Power decreases to one quarter when distance is 

doubled. At the Earth’s distance r = 1, so 

2
cos23

5


 
 

φ = 76° 

(b) At aphelion φ = 0°, cos φ = 1. 

5
123

5



r  

At a distance of 5 AU power decreases to only 

1/25 of the original: 

12690 / 25 = 508 W. 
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3.13 (a) 
7

75.5 10
1.22 1.22 2.8 10 rad

2.4D







       

(b) The angular size of the star must be greater 

than this value. 

The diameter of the Sun is 1.4∙109 m, so 
9

15

7

1.4 10
5.0 10 m 0.53 light-years

2.8 10
d




   


 

The closest star is more than 4 light-years from 

us, so it cannot be resolved by Hubble. 

(c) Yes, 430/0.53 =810 < 1200 

 
Hubble’s photo of Betelgeuse 

(source: Hudoba Gy.’s doctoral thesis, ELTE, 2016.) 

 

3.14 (a) The second photo, whose resolution is 

better, was taken by LRO. 

(b) The angular resolution of LRO is in the ratio 

of the lens diameters, 0.8/0.15 = 5.3 times the 

other. 

The resolution of the photo is 10 times more, so 

the other satellite took the photo from a height 

10/5.3 = 1.9 times greater, that is, from 

94 (about 100) kilometres. 

3.15 (a) For a given angular resolution the 

required diameter is proportional to wavelength. 

In the case of an optical telescope, using the 

wavelength 550 nm 

2
2 1 7

1

0.21
0.15 57 km

5.5 10
D D



 
    


 

(b) (As it is not a diffraction through a circular 

hole, the 1.22 factor is not needed.) 

sin 0.001 rad
d


    . 

(c) A smaller effective distance is substituted into 

the denominator instead of d, so the angle is 

greater, the resolution is worse. 

(d) The first signal comes from a source that can 

be regarded as point-like, but the second source 

has large extension relative to the resolution of 

the interferometer: the signals coming from its 

different points do not cancel out at the same 

place. 

 

3.16 (a) The wavelength of the 22-GHz radio 

wave is 
8

9

3.0 10
0.014  m

22 10

c

f



  


 

For the angular distance between the directions 

of reinforcement: 


d


 )(sin

 9

6

0.014
4.7 10 rad 1.0010"

2.9 10

   


 

(b) Using the wavelength 550 nm: 
9

9

1.22 550 10
1.22 140 m

4.7 10
D









 
   


. 

 

3.17 
fd

c

d


  

8
8

9 6

3 10
1.2 10 rad 0.0025''

5 10 5 10


   

  
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4. Measurements, exercises requiring independent 

student activity 
 

4.1 The quote below and the explanatory figure created with the printing tools of that time are from 

Galileo Galilei’s work Sidereus Nuncius (1610), in which he first gave account of the discovery of moons 

orbiting around Jupiter. Galileo discovered four moons, however, in this first note he mentioned only 

three moons. 

Retrace the objects seen by Galileo that night using the freely downloadable program Stellarium. Why 

did he see only three moons? What could “in the first hour of night” mean? 

 

 
 

 

4.2 Find a long street that runs in north-south direction. Step its length and determine the latitude of 

the two ends simultaneously using a GPS or a mobile phone application. Determine the length of your 

steps using a known distance. Based on the results, give an estimate of the radius of Earth. 

 

 

4.3 The average intensity of solar radiation arriving on Earth (on the top of the atmosphere) is called 

solar constant.. The aim of this exercise is to measure the solar constant.  

(a) 

 Fill a small plastic bottle with thin, transparent wall with a known amount of water. (The 1-dl 

honey bottle known by everyone is suitable.) You do not have to fill it completely, leave space for 

the thermometer.  

 Dye the water with black ink. (The honey bottle will be black enough from an ink cartridge for a 

fountain pen.) 

 If the flask is fastened to a stick with a transparent adhesive tape, then it can be placed easily in 

the desired place and at the desired angle by sticking the stick into the ground. 

On the 7th day of January in the present year, 1610, in the first hour of 

the following night, when I was viewing the constellations of the heavens 

through a telescope, the planet Jupiter presented itself to my view, and as 

I had prepared for myself a very excellent instrument, I noticed a 

circumstance which I had never been able to notice before, owing to want 

of power in my other telescope, namely, that three little stars, small but 

very bright, were near the planet; and although I believed them to belong 

to the number of the fixed stars, yet they made me somewhat wonder, 

because they seemed to be arranged exactly in a straight line, parallel to 

the ecliptic and to be brighter than the rest of the stars equal to them in 

magnitude. The position of them with reference to one another and to 

Jupiter was as follows. 

 

On the east side there were two stars, and a single one towards the west. 

The star which was furthest towards the east, and the western star, 

appeared rather larger than the third. I scarcely troubled at all about the 

distance between them and Jupiter, for, as I have already said, at first I 

believed them to be fixed stars. 

(Translation by Edward Stafford Carlos) 
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 You will require a thermometer that displays tenths of degrees: a digital multimeter or a household 

thermometer with an outdoor sensor is suitable. (If you do not want to dip it into inky water, you can 

pack the sensor into household plastic foil.)  

 First keep the flask with the thermometer sensor in it in the shadow until its temperature reaches the 

ambient air temperature. 

 Then put it on the sun and read its temperature every half minute or minute. It's probably enough to 

continue for 15 to 20 minutes. 

 Draw a line around the shadow of the dark part of the bottle on a graph paper laid on the ground. 

You will need the area of the shadow, so use of square paper or graph paper. 

 Either measure (e.g. using the shadow of a vertical stick), or find the angle of incidence of the sun's 

rays at the time of the measurement. 

 

(b) Draw a graph of temperature as a function of time. The slope of the graph is decreasing when the 

inky water is significantly warmer than its environment, because it gives off more heat to the 

environment. Therefore, use only the first, straight part of the graph. Set a straight line on it and 

determine the change in temperature ΔT in the corresponding Δt time interval. 

(c) Calculate the amount of heat required for the temperature change corresponding to the straight 

segment. 

(d) Calculate the area of the shadow. Determine the cross-sectional area of the sunbeam passing through 

the inky water from the area of the shadow and the angle of incidence of the sun's rays. 

(e) Assuming that the inky water can be considered as a black body, determine the intensity of the solar 

radiation on the flask from the results obtained.  

(f) The received value is not the solar constant yet, as solar radiation arriving on Earth is not transmitted 

completely through the atmosphere. The transmitted fraction depends on how clear or cloudy, misty the 

sky was at the time of the measurement It also depends on the thickness of air layer the sun's rays have 

to pass through, that is, on the angle of incidence of the sun's rays. 

Use the graph below to adjust the measurement result and determine the value of the solar constant. 
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http://sbo.colorado.edu/SBO_OLD_SITE/sbo/manuals/apsmanuals/suntemp.pdf 

 

 

4.4 This practice models how the radiation energy released inside a star reaches the surface of the star. 

The radiation cannot leave the star immediately in a straight line because the photons are re-absorbed 

and re-emitted. 

When a photon interacts with a particle, the particle absorbs the photon, and when it re-emits the 

absorbed energy, a new photon starts in some direction. We can look at the phenomenon as if the same 

photon wormed randomly until it reaches the surface of the star. 

As a simple two-dimensional model, let the star be the hexagon shown in the figures (see annex), where 

the points in the lattice are the particles on which the photon may be scattered. The two figures 

correspond to a smaller and a larger star. 

Suppose the photon starts from the grid point in the middle. Use a dice (or the random number generator 

of a pocket calculator) to find its direction of motion. 

 
Print the triangular grid and draw the broken line that represents the scattering according to the result of 

the throws. Continue to roll until the photon reaches the surface. Note the number of throws needed. 

Repeat it several times and/or compare the results to others’. 

 

 

4.5 Helium comprises a much greater fraction of the mass of material in the Universe than the amount 

produced by nuclear fusion in the stars. Most of the helium was created during the so-called primary 

nucleosynthesis, a process that followed the Big Bang. 

(a) In an early stage of the evolution of the Universe, the temperature was still high enough for the energy 

of thermal motion (estimated as kT, where k is Boltzmann's constant) to exceed difference 
2

p

2

n cmcm   

by far. Then protons and neutrons transformed into each other freely, with equal probability through 

reactions 

  

1

2

3

4

5

6

http://sbo.colorado.edu/SBO_OLD_SITE/sbo/manuals/apsmanuals/suntemp.pdf
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νpen  
, 

  epνn , 

so approximately 50% of (ordinary) matter was proton and 50% was neutron. 

 The mass of a proton is mp = 1.67263·10‒27 kg,  

the mass of a neutron is mn =1,67493·10‒27 kg. 

Give an estimate of the magnitude of temperature required for the transformation. 

(b) When the age of the Universe was about 0.1 seconds, the energy of thermal motion decreased to a 

value around 
2

p

2

n cmcm  , so the reactions did not occur with the same probability in both directions, 

the equilibrium shifted towards protons, whose mass is smaller.  

At 0.1 seconds the ratio of neutrons was only about 37%,  

1 second after the Big Bang it was only about 18%. 

The three figures in the first column (see annex) represent three states of the early Universe with 

100 particles. Colour the circles that correspond to neutrons and leave the ones that correspond to protons 

blank. 

(c) By the time when the Universe was 1 second old, the temperature and the particle density had 

decreased so much that the above reactions practically stopped. From that point on, the decay of existing 

neutrons played an important role. A free neutron decays to proton with a half-life of approximately 10 

minutes: 

 νepn  
. 

Find the probability that a given neutron decays within a minute. 

(d) The three figures in the second column illustrate this period. 

Select a neutron that still exists at 1 second. 

Use the random number generator of your calculator to generate a number between 0 and 1. 

If the random number is less than the probability obtained in part (c), the neutron transforms into a proton 

(now it is white). 

If it is greater, it survives the first minute, colour the same neutron in the figure of the 1-minute-old 

Universe. Do the same for other neutrons. 

Repeat the procedure for the neutrons that survived the first minute and record the result in the figure of 

the 2-minute-old Universe. Similarly, create the 3-minute-old Universe. 

(e) In the 3-minute-old Universe, the energy of the thermal motion decreased below the binding energy 

of the nuclei, so protons and neutrons formed nuclei. Because of the very high binding energy of the 

helium nucleus, virtually every neutron got into a helium nucleus. 

In the figure of the 3-minute-old Universe, show the created helium nuclei by grouping two neutrons 

and two protons together. If there is a neutron left, create a deuterium nucleus with one proton. 

Remark: 

In the primary nucleosynthesis after the Big Bang other nuclei were also created in smaller amount, but our simple, 100-

particle model is not suitable for showing these. 

In your Model Universe, what percent of the mass of the matter became helium? (If you have obtained 

a value between 20 and 30%, the simple model is consistent with theories describing the early Universe.) 
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4.6 This exercise demonstrates the expansion of the Universe using a two-dimensional analogy. 

(a) 

 Draw a few “galaxies” on an uninflated balloon with an alcoholic pen and number them. (No need 

for spiral arms, it is enough to draw dots.) Use relatively large amounts of ink, because the design 

fades upon inflating. Pick one of your galaxies and measure the distance of the other galaxies 

from this reference galaxy. 

 Inflate the balloon and measure the time it takes to inflate. Close the mouth of the balloon tightly. 

The Balloon Universe is ready. 

 Measure the distance of each galaxy from the reference galaxy again using a string (along the 

surface of the balloon). 

 Calculate the changes in distance. Changes over time will give you the (average) speed of 

recession. Graph speed as a function of the (second, that is, current) distance and determine the 

Hubble constant for the Balloon Universe. 

(b) Based on your calculations, find the estimated age of the Balloon Universe. Compare with the time 

of the inflation. 

(c) What would be the result if you chose another galaxy as reference? 
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Solutions 4. 
 

4.1 If “in the first hour of the night” refers to an observation one hour after nightfall, then Io and Europa 

were obscured. (It may also be that they were so close to each other that the resolution of Galileo's 

telescope was not high enough to differentiate them. According to Galileo's data, it is not possible to 

reconstruct the time of observation accurately. 

 
 

4.2 In Budapest, for example, the Buda side of 

river Danube between Margaret Bridge and 

Chain Bridge runs approximately in north-south 

direction. 

On the coastal promenade, at the foot of the Buda 

bridgehead of the Margaret Bridge, a latitude of 

47.5145º and at the foot of the Chain Bridge a 

latitude of  47.4984º were measured. The 

difference is the central angle belonging to the 

arc: 

(0.0161 ± 0.0005)º = 0.0161º ± 3.1% = 2.81·10‒4 

rad ± 3.1%. 

The distance was found to be 

2800 ± 100 steps = 2800 steps ± 3.6% long, and 

the length of our steps is 

(62 ± 2) cm = 0.62 m ± 3.2%. 

The distance, that is, the length of the arc is 

therefore 

2800·0.63 = 1740 ± 6.8%  

(= 1740 m ± 120 m). 

So the radius of the circle is 

4

1740
6190km 9.9%

2.81 10
 


 

So our estimate for Earth’s radius is 

6200 km ± 600 km. 

 

4.3 (a) The table shows the heating of 80 g of 

water poured into the honey bottle on 15 August 

around 1 pm. 

 
t (minute) T (°C) 

0 25.3 

1 25.9 

2 26.6 

3 27.2 

4 27.8 

5 28.3 

6 28.8 

7 29.2 

8 29.5 

9 30 

11 30.9 

12 31.3 

13 31.7 

14 32.1 

16 33 

17 33.2 

18 33.6 

19 33.9 

20 34.2 

21 34.4 

22 34.7 

24 35.3 

25 35.5 

26 35.7 

27 36 

28 36.2 

29 36.4 

30 36.6 
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(b) The first Δt = 4-minute segment of the graph 

is straight enough, the change in temperature is 

ΔT ≈ 2.5°C. 

(c) 4190 0.080 2.5 838JQ cm T      . 

(d) The area of the shadow was found to be 

38.5 cm2 by counting the squares on the square 

paper. 

Reading from a star map, the angle enclosed by 

sunbeams and the horizontal is 65°, so the angle 

of incidence is α = 25°. 

The cross-sectional area of the beam is 

A = 38.5∙cos25° = 34.4 cm2. 

 
(e) tAITcm   

4 2

838 W
1015

34.4 10 240 m
I


 

 
. 

(f) At the time of the measurement, the sky was 

quite clear, but slightly misty. Based on the 

given graph, the transmitted fraction can be 

estimated at 78%. 

So the value of solar constant is 

2

1015 W
(1300 100)

0.78 m
  . 

The error is primarily due to the inaccuracy of 

the initial slope of the graph and considering the 

inky water absolutely black. 

4.4 The number of required throws increases 

fast with the number of layers. 

Remark: 

For example in the case of the Sun, the magnitude of time 

required for the energy released in the middle to reach the 

surface is million years. (The Sun is, of course, three-

dimensional, and the process is much more complicated 

than this model. Among other things, because not only the 

size, but also the density and the temperature are 

important, and because the outflow of energy is not only 

transmitted by radiation: in the convection zone of the Sun 

the rise of higher-temperature gases and the sinking of 

lower-temperature gases is the main mechanism.) 

 

4.5 The impact energy of particles colliding in 

thermal motion 

 2

p

2

n cmcmkTE
27 8 2(1.67493 1.67263) 10 (3 10 )       

J102 13  
13

10

23

2 10
1.5 10 K

1.38 10
T






  


 

At temperature T = 1011 K there was still 

equilibrium. 

(b) 0.01 second: 50 neutrons, 50 protons 

0.1 second: 37 neutrons, 63 protons 

  
1 second: 18 neutrons, 82 protons 
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(c) After 10 minutes the ratio of remaining 

neutrons is 50%, so in 1 minute 0.51/10 = 93% 

remains, that is, 7% decays. This is equivalent to 

the statement that a given neutron decays with a 

probability of 0.07. 

(d) For example, the 18 random numbers are 

0.4538  0.8039  0.1593 

0.9757  0.4912  0.0229 

0.3399  0.6103  0.1113 

0.2643  0.7739  0.4721 

0.9454  0.2440  0.4694 

0.0977  0.0008  0.5283 

The sixth and the seventeenth values are less 

than 0.07, so after the first minute 16 neutrons 

remain. 

 

16 new random numbers: 

0.8040  0.0139  0.7914 

0.1031  0.8042  0.1872 

0.3738  0.1871  0.4266 

0.4416  0.6985  0.6963 

0.9275  0.3509  0.4525 

0.5128 

The second neutron decays, at the end of the 

second minute 15 neutrons remain. 

 

15 new random numbers: 

0.4989  0.7779  0.3046 

0.0424  0.7114  0.7534 

0.1555  0.4160  0.0774 

0.2302  0.6982  0.0630 

0.5933  0.8583  0.8344 

The fourth and twelfth neutrons decay, at the end 

of the third minute 13 neutrons remain. 

 

 
Of the one hundred particles of approximately 

equal mass, 6 times 4 build up helium nuclei, so 

the mass ratio of helium is 24%. 

 
 

4.6 (a) The table contains the measurement 

data, the time of inflation was 1 minute. 

Galaxy 

number 

Initial distance 

from galaxy 0 

(cm) 

Final distance 

(cm) 

Speed 

(cm/minute) 

0 0 0 0 

1 1.0 6.8 5.8 

2 2.2 14.3 12.1 

3 0.7 5.0 4.3 

4 1.4 10 8.6 

5 2.0 14 12 

6 1.2 7.0 5.8 

7 2.5 15 12.5 

 

The graph is a straight line, its slope is 
cm/perc

0.84
cm

H   

(b) The estimated age is 
1

1.2 minutes
H

 .  

The result is different from the time of inflation 

because it assumes uniform expansion and in the 

initial state the balloon already had a finite size. 

(c) We would get the same Hubble constant. 
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Annexes 
ANNEX TO EXERCISE 4.4 
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ANNEX TO EXERCISE 4.5 
 

 

0.01 second 

 
0.1 second 

 
1 second 

 
 

 

 

1 minute 

 
2 minutes 

 
3 minutes 
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