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The world of fractals 

 

 
The discovery of fractals shook our approach to the geometric nature of the world to the bottom: 

we suddenly realised that the ‘customary’ regular forms featured in the former image of geometry 
are, in fact, only a negligibly tiny segment of the living and non living material objects, while fractals 
grasp the genuine geometry and fundamental harmony of nature a lot deeper. Fractals are 
fascinating geometric structures of nature, manifesting themselves only at the very depth of our day 
to day experiences. Fractals provide not only the deeper understanding and simulation possibilities 
for the forms of nature, but revoke the filial affection in us towards the miracles and wonder of the 
world. 

An attempt is made below to make the essence of fractals understood and to present their 
significance in nature and in sciences through a number of examples. In order to raise interest and 
to assist a better understanding, download, unpack and then view and try the computer based 
learning materials and simulations in the fractalworld folder of the ZIP file linked on [1]. This study 
has been made for didactic purposes and relies heavily on internet based materials, available to 
anybody. 

 

1. What is a fractal? 

As a vivid example, let’s see a series of pictures taken on a seacoast with different (growing) 
blow-ups (Figure 1). When looking on one picture or another, you can not decide if you see the entire 
coastline or only a small detail of it, and hence, you do not have any reliable visual reference point 
to estimate the scale of the picture. The coastline is a so-called self-similar form. If you blow up a 
detail of a self-similar phenomenon or material object, it must be undistinguishably similar to the 
whole, or any other detail, therefore, if something is self-similar, its scale can not be determined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Self-similarity of the sea coast 

(Source: https://www.clicktocurecancer.info/natural-selection-2/images/2077_58_22.jpg) 
 

Now put the seemingly simple question, how long is the coastline of England. Measure it with 
‘measuring rods’ of various length (Figure 2). Four different sizes of measuring rods were used on 
the figure below: r=1 (320 km), r=1/2 (160 km), r=1/4 (80 km) and r=1/8 (40 km), and it was indicated, 
how many rods were needed to cover the coastline, obtaining values of 2880 km, 3040 km, 3840 km 
and 3880 km, respectively, for the length of the coastline. 

http://www.clicktocurecancer.info/natural-selection-2/images/2077_58_22.jpg)


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Measuring the length of England’s coast 

(Source: http://fractalfoundation.org/OFC/OFC-10-4.html) 
 

It can be seen that the perimeter of the island of England (i.e. the length of its coastline) 
depends on the scale, and the length keeps on increasing as you refine the scale, what is more, it is 
bound to infinity! You got, after all, that England is an extremely weird geometric form: its perimeter 
is infinite, while its area is finite. In an analogue way, it is also possible in the case of spatial structures 
that a geometric object has a finite volume but an infinite surface (Figure 17). It is no mere chance 
that the human lungs have a fractal structure just as well, since this organ made efforts throughout 
evolution to have as large a surface as possible, which could be best achieved by an infinitely rugged, 
ramifying structure of similar forms across the scales and sizes (Figure 5.b). 

Such conformations are called fractals. For the purposes of their characterisation the fractal 
dimension value D0 is introduced which is an extension of the customary concept of dimension. 
Below, fractal dimension is defined practically through measuring instructions. The fractal 
configuration embedded in a d dimensions geometric space is measured by covering ‘cubes’ with d 
dimensions and r size (scale) then counting the number N(r) of ‘cubes’ required for the cover, finally 
the associated 1/r and N(r) values are taken in a log-log presentation with different r scales (“box-
counting”). 

It will be experienced that the series of dots depicted this way fall onto a straight line with good 
approximation. The steepness of this line provides the value of the fractal dimension (Figure 3). The 
data of the real formations usually don’t match the line exactly. In order to deem the form in question 
to be a fractal, it is necessary to have the picture of the lnN(r)-ln(1/r) function straight throughout at 
least two or three orders of magnitude. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Measuring fractal dimensions (box-counting method) 

 

Using the definition above the well known values (1, 2 and 3, respectively) will be obtained for 
the ‘conventional’ geometric shapes (lines, plane figures, bodies), in other words the fractal 
dimension for the customary forms will conform with the ‘classical’ dimension concept. However, 
when the series of measurements made on the coastline of England or Norway are depicted, 
fractional values 1.25 (Figure 4), and 1.52, respectively will be obtained. 

  

http://fractalfoundation.org/OFC/OFC-10-4.html)


 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Fractal dimension of the coasts of England 

Based on the foregoing, you can state that fractals: 

 are infinitely complex, complicated geometric configurations, 

 which are self-similar in an exact or approximate (statistical) way across a several 
orders of magnitude (range) scale, 

 when any of their characteristics is plotted on a log-log scale (such as surface, volume 
or mass) as a function of their size, a line is obtained the steepness of which is the 
(typically fractional) fractal dimension. 

Fractals surround us everywhere, especially in nature. Among other, the mountains, the trees, 
the lightning bolts, leaves, fjords, snow flakes and clouds are all fractal forms. These naturally 
occurring fractal shapes please the eye and are found to be more exciting and beautiful than the 
simple and rigid geometric figures. View the [1] downloadable material, the video entitled 
fractals_in_nature.mp4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5a: Fractals in nature (mountains, trees, leaves, lightning, rivers, snow flakes, clouds) 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5b: Fractals in nature (plants, snails, shells, crystals, blood vessels in the lung and in the 
heart) 

The surface of the Moon is the best known fractal (across a 12 scale of different orders of 

magnitude), with a fractal dimension of D0 = 2.2 (see the downloadable material [1] for the video 

moon.mp4). 
Since fractals are fundamental structures in the world, they can be created simply, in a 

straightforward way. 
 

1.1. Let’s make fractals 

Below, fractal pellets are made of paper in a simple way and the measuring method of the 
fractal dimension by box-counting is also illustrated. Let’s take two simple A4 size papers and make 
it lesser and lesser in size by halving all the time, as seen on Figure 6! Indicate the smallest of the 
series with 1, and the largest one (Size A4) with 7. Thus, the members of the series have a mass of 
1, 2, 4, 8, 32 and 64, respectively, when the mass of the smallest piece of paper is considered to be 
the unit (in the case of paper sheets, the mass is proportional with the surface, i.e. the square of the 
linear size). Crumple each sheet into the shape of a ball by pushing, rolling, kneading them strongly, 
but not too extensively, then measure their diameter by taking the average of several measurements 
for each ball! 

Arrange the data into a table as follows. Indicate the mass of the pellets (paper sheets) in 
Column 1 of the table by taking the mass of the smallest (No. 1) paper sheet as one unit, and put 
the logarithm of this value into Column 2. Introduce the measured diameter of these paper pellets 
into Column 3, in Column 4 the diameters relative to the diameter of the smallest ball, and finally the 
logarithm thereof in Column 5 (for instance, the data set obtained this way can be found among the 
downloadable materials [1] as the fractdim_table.xlsx Excel spreadsheet). In order to determine the 
fractal dimension the linear size and mass need to be plotted on a log-log scale, that is Column 2 
and 5 are needed from the table. A line can be fit onto the data set of the obtained value pairs using 
for instance the principle of least squares (this can be easily achieved using the lsm.xlsx Excel 
spreadsheet in the [1] downloadable materials). The steepness of the example on the picture (i.e. 
coefficient of x), in other words the fractal dimension is approximately D0 = 2.53, which is a good 
match with the value of 2.5, obtained from the so-called Flory-theory. This theory describes the so-
called self-avoiding random walk configurations mathematically. This term speaks for itself, and fits 
the paper pellets and thread balls perfectly. 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Making paper pellets and measuring fractal dimensions 

Fractals can be created even in a simpler way. Housewives keep on folding and stretching 
dough when kneading it, since the best mixing procedure is achieved by the recursive algorithm of 
stretching and folding, resulting in a typical fractal nature. Various colour plasticine rods can also be 
folded and stretched in a similar way to obtain spectacular patterns (Figure 7). 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Fractal generation by stretching-bending algorithm (dough kneading and plasticine) 

People are pleased when shaping wonderful fractal structures by their own hands, stirring paint 
pots or using the so called marbling technique (see downloadable materials [1] for the marble.mp4 
video) (Figure 8) 

 
 
 
 
 
 
 
 
 
 

 

Figure 8: Making fractals by stirring paint pots and the marbling technique 

 

In spite of their irregularities, fractals are miraculous and reflect the deep harmony of the 
material world in our minds, no wonder that they have been incorporated into arts quickly, giving 
birth to a branch of art working with novel means. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Self-similar fractal nature of Jackson Pollock’s paintings with a series of blow-ups 

The self-similarity fractal properties of the paintings by Jackson Pollock (maybe the greatest 
American painter of the 20th century) made using a specific technique are illustrated on Figure 9 
above (we will get back to here for a couple of thoughts in Chapter 4). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: Fractal mandala and surface burning technique 

Digital art takes us to the miraculously exciting world of the fractals with the help of computer 
programmes (see for instance a fractal mandala by Alexa Szlávics on the left hand panel of Figure 
10). Numerous programmes exist today with which anybody is able to create wonderful unique 
fractals on a computer with more or less effort and time. As an example, see the free Apophysis 
programme illustrated on the video entitled Apophysis_3d_fractals.mp4 found among the 
downloadable materials [1]. 

Beside the trickling technique applied by Pollock, high voltage surface burning techniques 
represent another exciting manual opportunity to create fractals (right panel on Figure 10). View the 
videos fractal_digital_art.mp4, and fractal_burning_art.mp4 among the downloadable materials [1]. 
A real measure for popular attention is the fact that fractals gained ground in the fashion industry [2]. 

 
 

2. Deterministic fractals 

It follows from the self-similarity property that the simplest way of creating fractals is the 
application of recursive algorithms, since in such cases generation takes place according to clear 
rules and the configurations obtained this way are called therefore deterministic fractals. 

First have a look at the recursive algorithm of the so-called Koch-curve fractal (Figure 11). 
Take a regular (equilateral) triangle, reduce each side by three, and draw further equilateral triangles 



on each middle third section. Apply further ‘outcrops’ on the triangle sides thus obtained, continuing 
the operation ad infinitum. Albeit consisting of straight lines only, the curve will start to be more and 
more similar to a snow flake (therefore it is also called the snow-flake curve.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Generation steps of a Koch-curve (snow flake) and a real snow flake 

It can be seen that in all steps of the generation process of the Koch-curve the perimeter will 
be incremented 4/3 fold, thus tending towards infinity, while the area remains finite, that is a fractal 
is received. Use the box-counting method to determine the fractal dimension. The scale of r (element 
size) is reduced by three in each step, that is r = (1/3)n after steps n, while the N number of elements 
needed for coverage is increased four folds in each step, that is N(r) = 4n after steps n. Hence, the 
fractal dimension will be as follows: 

 
 
 
 
 
 
As a second notable example, Figure 12 shows the generation steps of the Sierpinski-

triangle (as well as the picture of a shell with similar patterns). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Generation of the Sierpinski-triangle and a shell with similar patterns 

The so-called Cantor-set fractal is generated by the following recursive algorithm: leave the two 
extreme piece of r-proportion (r < 1/2) of the sections at the beginning of any of the steps, and (the 
proportions may differ on the left and right) and remove the remaining piece in between (Figure 13). 
 
 
 
 
 
 

Figure 13: The first four steps of Cantor-set generation at r = 2/5  



Based on the definition above it can be easily realised that the fractal dimension of the Cantor-
set is: 

D   ln 2 
0 1 

ln  
r 

 
that is, for instance in the case seen on Figure 13 D0 = 0.756. 
An important method of fractal generation is the ‘projection’ of fractals, that is their direct 

(Cartesian) product. Do not get frightened of this awkward looking mathematical expression, it means 
a construction easy to illustrate. See for instance Figure 14 showing the first four steps of creating a 
Cantor-thread fractal. In horizontal direction, the Cantor-set recursion described earlier on takes 
place, while perpendicular to it, in vertical direction the filling is continuous and therefore a linear 
(thread-type) structure is created. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14: Cantor-thread fractal generation using direct product construction 

 
The dimension of the conformation D0 obtained with direct product will be derived from the sum of the 
dimension of the two initial forms: D0

(1) and D0
(2) 

 
 
In the case of the structure seen on Figure 14, if the Cantor-set algorithm with the parameter value r = 
2/5 is applied horizontally, the dimension of which, seen before, is 0.756, while lines are remain 
continuous vertically, with their obviously being 1, the fractal dimension of the Cantor-thread form 
obtained will be D0 = 1.756. 

The geometric form constructed by the direct product of the two Cantor-sets is called the 
Cantor-cloud (Figure 15). 

 
 
 
 
 
 
 
 
 

 

Figure 15: Cantor-cloud constructed by the ‘collation’ (direct (combinatorial) product) of the Cantor-
set 

  



If a Cantor-thread algorithm is used on Figure 15 which has a parameter value of r = 1/3 both 
vertically and horizontally, how much will be the fractal dimension of the Cantor-cloud obtained? 

As shown, fractals embedded in d dimensions space are measured by covering them with d 
dimensions r sized ‘cubes’, thus the volume of the fractal will be: 

V r N r rd rD0   rd  D0 . 

For the ‘common’ or ‘thin’ fractals, discussed so far D0  d , in other words their volume will 

disappear in the boundary case r 0 (non space filling forms, null degree sets). There are forms, 

however, for which D0  d , therefore their volume is V, yet are strongly articulated and self-similar, 

i.e. are of fractal nature: fat fractals. For instance, you get a fat Cantor-set when taking out the middle 
rn size piece from a section in step n (Figure 16). 

 
 
 
 
 
 
 

 
Figure 16: The fat Cantor-set 

As a last example, the generation of the so-called Menger-sponge is discussed below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Recursive reconstruction of the Menger-sponge and the Simmons Hall in MIT Cambridge 

The sponge is generated according to the following recursive algorithm (Figure 17 left panel): 
you start with a cube, which is divided into 3×3×3 parts and the cross-like form consisting of seven 
(!) little cube in the middle, then the remaining cubes are divided up in all subsequent steps and take 
the middle out. When continued up to infinity, it can be concluded, that the volume of the cubes tends 
to zero, since 7/27 part, i.e. about 26 per sent of the cubes is removed in each step. After 10 steps, 
only (20/27)10 part of the original cube will be left over, accounting roughly for 5 per sent. On the 
other hand, the surface of the form grows by each step, heading to infinity. Buildings with small mass 
and large surface can be constructed this way. 

A practical and widely used way to specify and generate regular fractals with computers and 
recursive algorithms is the so-called L-system declarative language method. The method developed 
by A. Lindenmayer can be used to describe the steps of a turtle graphics easily. The symbols carry 
the direction of movement and length of steps of the pen. The l-system.swf Flash program (you need 
an Adobe Flash Player to run it) found in the downloadable materials [1] provides an excellent 
opportunity to create a number of well known and spectacular fractal shapes (Figure 18). You will 
better understand the L-system language by reading the L-system Method item in the program. 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 18: Screenshot of a fractal plant and L-system generator 

 
 

3. Stochastic fractals 

Another important group of fractal generating procedures consists of random iteration 
algorithms, which result in the so-called stochastic fractals. Somehow random moments are inserted 
into these algorithms: either the initial condition is generated randomly, or the value of the given 
parameter(s) is selected (changed) arbitrarily, or random bifurcations are inserted into certain steps. 
Examples for all the three possibilities are given below. 

In the so-called percolation models each cell element on a one (two or three) dimensions grid 
has two states, and besides, each element also hold an inherent property. For instance, in the water 
permeability percolation models of soils the cell elements are soil segments of a given size with “wet” 
and “dry” as the two possible states. The inherent property is, whether the given segment is “porous” 
(“permeable”), or “non-porous” (“impermeable”). The inherent property of the cell elements is 
generated randomly: each element is given one of the values with a probability factor of p, and the 
other with a probability (1-p). Next, an arbitrary initial state is given: for instance, all elements on the 
uppermost row of the soil segments is set to “wet”, all the others to “dry”. The following will takes 
place with each time step of the algorithm: if the dry and porous cell has at least one wet neighbour, 
it will become wet, non-porous cells remain dry. The first three time steps are seen from a run on 
Figure 19 (10*10 field, p = 0.7). Light blue boxes are porous, whites non porous, and black cells are 
seen as wet (anything which is not dark blue, is dry). 

 
 
 
 
 
 
 
 
 
 
 

Figure 19: The first three time steps of generating a percolation fractal 

The function principle of coffee machines, for instance, can be understood on the bases of the 
percolation models (in such a case, hot water vapour ‘percolates’ through the ground coffee beans 
from the below to the top, dissolving flavour substances from the coffee and distilling in the upper 
tank having passed the filter). 

  



 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20: Operation of a coffee machine based on the percolation model 

As seen above, Cantor-clouds can be created by projecting two Cantor-sets through their direct 
product. The class of the fractal forms thus obtained can be widened by selecting the r ratio of the 
right and left sections to be retained on both sides with different values and randomly from a given 
interval in each of the steps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Generating stochastic Cantor-cloud fractals 

Figure 21 shows the forms obtained after steps 1 and 10, respectively, of three different runs. 
Such fractals are used for encrypting images for instance. 

The turtle graphics mentioned at the end of Chapter 2 can easily be rendered stochastic: the 
movement of the pen is directed by certain pre-determined rules and one of them is selected 
randomly each time (all rules are associated with a given selecting probability), and the selected rule 
will direct the pen in the step concerned. 

 

3.1. Chaos games 
Take a so-called chaos game played using the random recursive algorithm below: 

 Select randomly a point in the inside of the (regular) ABC triangle. 

 (*) Roll the dice. 

 Connect the selected point with 

o corner A, when the 1 or 2 comes out on the dice, 

o corner B when the 3 or 4 comes out on the dice, 

o corner C, when the 5 or 6 comes out on the dice, 

 the new current point will be the bisecting point of the connecting section, 

 jump to (*). 
(Note: it is not necessary to have a regular triangle.) 
The algorithm (Java script) is found in the chaos_game folder of the downloadable materials 

[1], it is absolutely recommended to try it (can be started using the index.html file). 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 22: Screenshot of the computer aided implementation of the chaos game 

In the initial state of the playing field red, blue and green coloured control points placed on the 
tips of the regular triangle, a black coloured current starting point in the middle of the triangle (it could 
be anywhere else in the inner side of the triangle), and a coloured rolling wheel with the pointing 
marker are seen (Figure 22). The wheel can be turned by clicking on it and the colour selected by 
the pointer randomly will be the control colour, while the new current point will be the bisecting point 
of the section between the previous (initially black) current point and the control point in the selected 
colour. It will appear in the selected colour and the operation is repeated over and over during the 
game. 

Buttons under the playing field can be used to select the speed of the draw operation (slow or 
quick), the number of operations (and points displayed) in any one step (10, 100, or 1000), as well 
as the geometric figure (triangle, square, or hexagon). 

In the course of the game the remarkable and interesting development can be observed (Figure 
23), that the set of points will be quite similar all the times to the well known Sierpinski fractal (Figure 
12), which is generated by deterministic algorithm, while this game is based on a random (stochastic) 
algorithm. To put it more formally, the Sierpinski fractal would contain the series of points obtained 
over any runs in the game with a probability of one, or, in the terms of chaos theory, the trajectory 
(path) attractor describing the movements and colour of the current point will be the Sierpinski-fractal 
itself. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 23: The dot set form developed in the course of the chaos game 

How can it be explained why the set of points over the game appear always in the Sierpinski 
fractal shape? 



Even more exciting discoveries are made by little variations of the game! The simulation 
entitled chaos_game.ggb in the downloadable materials [1] is recommended for this purpose. It 
implements a generalised version of the chaos game in the GeoGebra programming environment. 
Therefore, the freely downloadable GEOGEBRA programme must be installed for running it (for 
instance, GeoGebra Classic 5, or 6 on the site [3]). This implementation provides tow kinds of 
variabilities. On one hand, the basic structure can be changed: using the upper slide the number of 
the control tips can be set to between 3 and 6, or even drag these corners to any place using the 
mouse cursor, in other words the form of the figure can be custom made. On the other hand, the 
lower slide can set which point of the section between the current point and the corner point selected 
in the given step should be the new current point (i.e. the ratio from the corner point). These two 
variable options provide the opportunity (and pleasure) of computerised experimentation. Detailed 
discussion of such opportunities are beyond the scope of this study, but they offer really exciting 
discoveries! For instance, if the control form is a square, the set of points will fill the entire area or 
appears the form of the formerly acquainted Cantor-cloud, pending whether the ratio factor is greater 
or lesser than 0.5, respectively. Those interested in the topic more intensively, may discover the 
website cited as [4], and the [1] downloadable materials with the chaos_game_in_square.mp4 video. 
An interesting scientific application is the so-called Chaos Game Representation (CGR), discussed 
shortly in Chapter 4. 

As a little detour, an interesting logical game is discussed here based on the chaos game 
covered above (Figure 24). The basic playing field of the game is a grey Sierpinski-triangle with a 
given resolution. The initial state contains a yellow triangle and a little black dot in the right bottom 
corner. The task is to move the black dot into the very inside of the yellow triangle (perimeter points 
do not apply) according to the following rules. The black dot can be moved towards the red, blue and 
green circles on the three corner points of the figure. From the momentary position the point is moved 
towards the selected corner, into the bisecting point of the connecting section (as known from the 
chaos game). The goal is to reach the target field by finding the optimum strategy and the minimum 
number of steps. Of course, both the yellow target triangle and the resolution of the Sierpinski-triangle 
can be subject to change (as resolution rises, the target triangle shrinks in size and the task will 
become more and more difficult). Sierpinski playing fields can be printed out in A4 size with different 
resolutions from the document entitled chaos_game_table.doc found in the downloadable materials 
[1]. Mark the point to be moved on the table using an X, select the target field and identify the 
appropriate bisecting points using a rules over the steps and follow its movements. (Computerised 
and mobile application implementation of the chaos logical game is anticipated in the near future). 
Can you get the black point to the target field? Using the resolution on Figure 24 the minimum number 
of steps is 5. In how many steps did you manage? Can you develop a strategy for all times? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 24: Chaos logic game 
3.2. Generating landscapes 

 
Generating realistic landscapes is a good example for the application of random iteration 

algorithms (for movies, video games). A fractal landscape is a surface, which is generated by a 
stochastic algorithm, designed to create results showing fractal behaviour, thus invoking the illusion 



of a natural relief. In other words, a not a predetermined fractal surface is obtained at the end of the 
operation, much rather a random form carrying fractal like properties. Steps of the most frequently 
used so called diamond square algorithm is seen on Figure 25. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25: Some steps of the diamond square algorithm  
(Source: https://www.researchgate.net/figure/a-The-method-DS-Algorithm-that-generates-fractal-terrain-Red- 

dots-represent-the-new_fig2_320554782) 
 

Figure 26 illustrates the generation of a computer aided fractal landscape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26: First steps and final result of stochastic fractal landscape generation 

In this chapter, thus, it is shown that stochastic fractals grasp the geometry of the material 
world even more deeply and generally. 

 

4. Fractals in science 

Since their discovery, fractals are used in more and more field, ranging from heart beat 
characterisation through investigating equilibrium, cancer research, stock exchange trends, 
meteorology, computer graphics, up to digital image processing. In this last chapter of the study a 
few examples are flashed to emphasise the significance of fractals in the world of science and 
technology. 

The mathematician Richard Taylor analysed the fractal properties of the paintings made by 
Jackson Pollock using scientific methodology [5]. Such points of interest were surfaced for instance 
in relation to the paintings of Pollock, that their fractal dimensions, that is their irregularity were 
increased with the age of the artist, as if the artist had been able to develop his fractal creating 
capacities. The Pollock-Krasner foundation established by the widow of the early deceased 
renowned artist handed over six paintings to the research team led by Taylor, to examine the 
authenticity of the paintings based on their results obtained so far. The mathematical analysis 
pronounced the paintings to be most probably mere imitations, forgery, with a very slight chance only 

http://www.researchgate.net/figure/a-The-method-DS-Algorithm-that-generates-fractal-terrain-Red-


that indeed Pollock was the author. An exciting and so far quite efficient new scientific approach, 
Chaos  Game Representation is based on the chaos game discussed in the previous chapter, 
illustrated here with the example of the DNA structure (Figure 27). Information on the architecture of 
the living matter is found in the base sequence of DNA, i.e. the order of the four bases (Adenine, 
Guanine, Cytosine and Thymine) carries the information. In this case, therefore, the initial controlling 
form is a square with A, G, C and T letters (corresponding to the bases, with the algorithm known. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 27: Representation of the amino acid structure of proteins in a chaos game (CGR) 

(Source: https://www.researchgate.net/figure/CGR-representation-Chaos-Game-Representation-CGR-map- of-
random-DNA-sequences-of-length_fig1_224886995) 

 

Detailed discussing is far beyond the scope of this study, the description found at the link [6] 
is recommended for more information, merely its use is mentioned here: 

 characterisation and classification of species, 

 identification and comparative analysis of organisms 

 display and analysis of gene sequences, 

 localisation of characteristic parts of gene sequences (such as intron, exon, 
promoter, transcript factor), 

 analysis and identification of proteins. 
A number of examples can be found for chaotic processes in medicinal biology just as well. In 

fact, such processes are fundamental. Frequently the problem is just the discontinuation of the 
chaotic behaviour and in such cases medicine is charged with the task of restoring chaos. In epilepsy, 
for instance, the normal chaotic functions of the brain must be put to place. Our body, by the way, is 
stuffed with fractals. Due to coercion by evolution, living organisms developed energy and space 
saving solutions. Maybe the most typical such development is the presence of space filling fractals. 
As seen above, average human lungs extend to a size of a tennis court, yet fit in the chest. 

Fractals are infinitely complex, complicated conformations, which can be described sometimes 
using pretty simple rules. This dichotomy allows compaction of data sets such as images. The 
encryption of information is one of the most important field of application for fractals and chaos 
theory. The video entitled fractal_encrypt.mp4 found among the downloadable materials [1] provides 
a little insight into the essence of the procedure. 

Note that according to the latest research findings on the large scale architecture of the 
Universe the distribution of galaxy clusters also shows the nature of a fractal. 

 
  

http://www.researchgate.net/figure/CGR-representation-Chaos-Game-Representation-CGR-map-


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28: Fractal nature of the large scale structure of the Universe 
(Source: https://www.dhushara.com/funiv/FractalUniverse.htm) 

 

Finally, let’s take chaos theory, the most important and significant area where fractals appear (and 
one of the research topics of the authors of this paper). Chaos theory is one of the most significant 
achievement of science in the second part of the 20th century. Although they can be described using 
simple (low degrees of freedom), unequivocal (deterministic) principles (in fact, by a couple of non-
linear dynamic equations) chaotic systems move with the following basic properties: 

 they show irregular (non-periodical, complicated) behaviour, 

 due to the rapid growth of the errors in the initial state and hence, extreme sensitivity 
to the initial conditions, the behaviour of the system practically is unpredictable for a 
longer term (thus only a probability description can be provided), 

 long term behaviour in the phase space completely defining changes over time is 
characterised by a special geometric structure, or order (for instance, attractors in the 
phase space show fractal geometry). 

Due to the subject matter of this paper the last aspect is the most important. Physics investigate 
changes of the properties of the most diverse systems over time, and phase space is a convenient 
tool to describe such changes. Phase space is an n dimensions abstract space defined by the 

number of variables x x1, x2 ,..., xn} minimally necessary for unequivocal definition of the state of a 

dynamic system in any one moment. System state is represented by a point of the phase space in 
any moment, and the curve covered by the phase point over time in the development of the system 
is the trajectory. The construction of the phase space is illustrated by the run of the file entitled 
phase_space.html found among the downloadable materials [1]. The attracting set of the phase 
space, towards which the trajectories are heading on the long run is called attractor, and the attractor 
of chaotic systems is of fractal nature. Fractal geometry associated with system types and chaotic 
properties is illustrated on Figure 29. 
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Figure 29: Chaos and fractal geometries 

As an example, the self-similar Cantor-thread type chaotic attractor of the frictional non-linear 
incited oscillation (the so-called Duffing-oscillator) can be illustrated on Figure 30 by serially zooming 
in onto the angular diversion-angular velocity phase plane. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 30: Cantor-thread fractal geometry of the chaotic attractor in the Duffing-

oscillator (self-similarity) 
 



One of the simplest, most interesting, commercially available device showing chaotic 
behaviour is the so called magnet pendulum; Small magnet discs of different colours are placed on 
the supporting plate under the thread pendulum made of a magnetic body which attract (or, 
alternatively, in another type, distract) the magnetic body on the end of the pendulum. The pendulum, 
when started from the diverted position, shows a so called transient chaos, i.e. moves chaotically for 
a finite period of time, finally stopping above one of the magnet discs due to friction. The attraction 
range can be mapped when starting the pendulum from different starting points and indicating the 
initial position with the colour of the magnetic disc above which the pendulum is finally stopped. The 
map obtained this way has a fractal geometry, and it is recommended to view the video 
magnet_pendulum.mp4 of the downloadable [1] materials. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 31: The magnetic pendulum and the map of the fractal geometric attraction range 
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