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Abstract. There is a consensus on the importance of teaching/learning quantum mechanics in teacher education, but the 

way to implement this can vary widely depending on the goals. We cannot avoid the current, traditional secondary school 

curriculum, which includes wave-particle duality, bound states, and so on in most countries. But it is also worth preparing 

students for the second quantum revolution, which is about quantum computations. Approaches based on two-state systems 

not only provide an alternative foundation but also an introduction into quantum computations. They are also beneficial 

because educational researchers have already explored the power of two-state-system-based approaches such as the Dirac 

polarization approach in secondary school. So, applying two-state approaches can bring quantum computation closer, 

prepare the general formalism of quantum mechanics through illustrative examples and provide a new pedagogical insight 

in secondary school. In this paper proposals are presented for integrating the Dirac polarization approach into teacher 

education. It is shown how the formalism of QM can be adapted to the students’ prior knowledge, and extra topics can be 

added bridging the gap between secondary school and university. 

INTRODUCTION 

According to the literature, there are different options for introducing quantum mechanics (QM) based on two-state 

systems [1-3], one of the earliest uses the Dirac polarization approach [4] for this purpose [5]. The Dirac polarization 

approach in secondary school teaching is widely known by now, several papers present educational materials [5-9] 

and we can also be convinced that this teaching proposal is appropriate for secondary school level [10-17]. In addition, 

an international research groups on teaching/learning QM has also been formed [18]. However, the situation in the 

teacher education is different (as mentioned in [19]) because the prior knowledge of university students is broader, 

and the purposes may also be different: teachers need to know not only the foundations and formalism of quantum 

mechanics [20-22] but also guidelines of teaching/learning. 

Prospective teachers meet with QM in their 4th year of university studies, at Eötvös Loránd University (ELTE), 

Budapest, Hungary. In the first 3 years, students learn the basics of linear algebra, differential equations, complex 

numbers, probability theory and some atomic physics. This also means that we can make use of students’ prior 

knowledge without, for example, avoiding the use of matrices as we do in secondary school. Taking these into account, 

we need to expand the curriculum, change some topics and better prepare the general formalism of QM. In this paper 

a pilot project is presented aiming the incorporation of the Dirac approach in physics teacher education. 

THE PHENOMENOLOGY OF DIRAC POLARIZATION APPROACH 

The original secondary school curriculum can be found in more detail in the published literature [5-9]. Polarization-

related experiments are easy to bring into the education of prospective teachers because polarization [23] is part of the 

Physics curriculum. Dirac approach applies polarization [24-26] to explore some of the fundamentals and formalism 

of QM. In the first part of the pilot project, university students explore the phenomena of polarization (Fig. 1.) and 

birefringent crystals, just like school kids but in a much shorter time. After that, students measure Malus’ law, which 
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states that if polarized light falls on a polaroid, the intensity IT of the transmitted light is IT = I0 ∙ cos2 θ, where I0 is the 

intensity of the incident polarized light and θ is the angle between the polarization direction of the polaroid and the 

polarization direction of the incident light. 

 

FIGURE 1. Schematic diagram of polarization. Unpolarized light becomes polarized as it passes through the first polaroid. Then 

this polarized light passes through a second polaroid and gets reduced in intensity and obtains a different polarization property. 

The light intensity is indicated with the number of lines, and the polarization property is indicated with the angle of the lines. 
 

This classical phenomenon is converted into an interpretation wearing certain basic aspect of QM by introducing 

the photon hypothesis. By accepting that light consists of photons and the number of photons is proportional to the 

intensity of light (if the light is monochromatic), then Malus’ law also holds for the number of photons N:  

NT = N0 ∙ cos2 θ. But if only one photon falls on a polaroid, Malus’ law contradicts the indivisibility of photons. This 

problem can only be solved by assuming that Malus’ law has a probabilistic meaning as shown in Fig. 2., i.e. a single 

photon is transmitted with probability Pr = cos2 θ. 

 

 
FIGURE 2. The probabilistic meaning of Malus’ law. If a photon is polarized at 45° to the horizontal, then Malus’ law is 

expressed as the probability of transmission of the photon through the second polaroid: Pr = cos2 θ = 1/2. 

 

The aim of the project is to build a framework for introducing preschool teacher students into QM by utilizing 

their knowledge of mathematics via simplified, model of QM. The pilot project lead by the author of this paper 

consisted of 3 times 90-minute lessons in the first weeks of the semester, attended by 13 students as detailed in Table 

1. In the first lesson, students carried out experiments and learned about Malus’ law. In the second lesson, students 

performed statistical calculations based on the probabilistic interpretation of Malus’ law. Finally, students were 

introduced to a simplified version (e.g., the use of complex numbers is avoided) of the full quantum formalism. 

TABLE 1. The Dirac approach implemented in teacher education. 

# Lessons 

(/90 min) Topics Goals 

#1 
Exploring 

polarization 

 Phenomenon of polarization and birefringent crystals. 

 Malus’ law. 

#2 Calculations 

 The validity of Malus’ law for single photons. 

 Calculate deviations and expectation values using the probabilistic 

interpretation of Malus’ law. 

 The uncertainty principle. 

#3 
Simplified 

formalism of QM 

 The quantum state and transition probabilities. 

 The superposition principle. 

 Physical quantities represented with operators as linear combinations 

of projectors. Matrix form of operators. 

 Commutator of operators and the uncertainty principle. 

 The eigenvalue equation of photons passing through a polaroid. 
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ELEMENTARY STATISTICAL CALCULATIONS WITHOUT THE FORMALISM OF 

QM 

This section presents calculations which are not part of the original secondary school curriculum [5-9] (but can be 

incorporated) and have been used in the pilot project for physics teacher education at ELTE. The Dirac approach 

allows statistical calculations without any quantum formalism, only using the probabilistic interpretation of Malus’ 

law. These elementary statistics calculations provide evident and illustrative examples, which support later studies 

when students are faced with abstract questions. In this paper the general calculations are shown, but particular 

examples (with different direction of polaroids) were also given in the teaching units. 

Consider a polarized photon falling on a polaroid. The probability of transmission is given by Malus’ law 

Pr = cos2 θ = p, where θ is the angle between the polarization direction of light and the polarization direction of 

polaroid. If we know the probability of an event, we can carry out statistical calculations such as expectation value 

and standard deviation. First, we must recognize that the measurement has two possible outcomes, since the survival 

of single photon is a two-state problem. Similarly, to coin flipping, we can assign numbers to the permitted outcomes. 

We have chosen to measure value λ1 = +1 if the photon passes through the polaroid and value λ2 = 0 if the photon is 

absorbed. The assignment can be arbitrary, but our choice appears to be natural in view of the physical interpretation 

of photon-polaroid interaction. The probability of measuring λ1 is p = cos2 θ, while the probability of measuring λ2 is 

1 − p = sin2 θ. If we know the possible measured values and their probabilities, we can calculate the expectation value 

of a polarization measurement A with a polaroid: 

⟨A⟩ = p ∙ λ1 + (1 – p) ∙ λ2 = cos2 θ ∙ (+1) + sin2 θ ∙ 0 = cos2 θ. 

The expectation value of quantity A2: 

⟨A2⟩ = p ∙ λ1
2
 + (1 – p) ∙ λ2

2
 = cos2 θ. 

With these, the standard deviation ΔA can be easily calculated: 

(ΔA)2 = ⟨A2⟩ – ⟨A⟩2 = cos2 θ – cos4 θ = cos2 θ sin2 θ = 1/4 sin2 (2θ), 

ΔA =1/2 |sin 2θ|. 

The same is true for any polarization measurement with a polaroid with any orientation (and also for calcite crystals). 

By assigning the symbol B to a polarization measurement with a polaroid of different orientation for the same 

ensemble of photons, the deviation is the following: 

ΔB = 1/2 |sin 2χ|, 

where χ denotes the angle between the polaroid and the angle of polarization of the photons. 

Notice that if the direction of polaroids A and B are not the same, neither are they perpendicular, then one of the 

deviations is always nonzero for a given polarization of incident photons. This is the consequence of the uncertainty 

principle: there are physical quantity pairs (A and B in the example) that cannot accurately be measured simultaneously 

(in the same state), so one of the two quantities always has nonzero deviation as shown through a particular example 

in Fig. 3. This graphical interpretation of the uncertainty principle has not yet appeared in the literature. 

 

FIGURE 3. The physical quantity A means a measurement with a polaroid of polarization direction α = 30° (to the horizontal) on 

polarized photons whose state is given by the polarization angle φ to the horizontal. The physical quantity B also means a 

polarization measurement but with a polaroid of horizontal direction β = 0 on the photonic state. The red curve is the graph of 1/2 

|sin 2θ| = 1/2 |sin (2φ − 2α)| and the blue one is 1/2 |sin 2χ| = 1/2 |sin (2φ − 2β)|. The graphs show that one of the quantities 

always deviates from the expectation value in any state. This is the consequence of the uncertainty principle. The circles mark 

states corresponding to the direction of one of the polaroids, when the deviation is zero. If one of the quantities can be precisely 

measured, the other one is uncertain as the dotted lines indicate. 

050011-3

 28 July 2023 21:16:40



 

Table 2 shows tasks from the pilot project related to a situation when horizontally polarized photons fall on a 

polaroid with 30° polarization direction to the horizontal. The first column lists the tasks, and the second column 

shows the skills that students can acquire when solving the tasks. 

TABLE 2. Elementary statistical calculations adjusted to the probabilistic interpretation of the Dirac approach. 

Task Topic 

a) What is the probability of passing through 

the polaroid for a single photon? 

Probabilistic features of QM (individual events 

are usually probabilistic). 

b) What is the expectation value of the 

polarization measurement if the possible 

measurable outcomes are λ1 = +1 and λ2 = 0. 

Mark the physical quantity by symbol A. 

 

c) What is the deviation of the measurements? 

Expectation value, standard deviation, and 

understanding their physical meaning (the 

average of repeated measurements and the 

uncertainty of measurements). 

Statistical point of view (in a given state). 

The quantum mechanical way of thinking (the 

statistical description is the consequence of 

probabilistic interpretation and not of the error 

of the measuring device etc). 
d) What is the deviation of the polarization 

measurement with a polaroid of 45° 

polarization direction (instead of 30°) in the 

same state? Mark the physical quantity by 

symbol B. 

e) Sketch the deviations of quantity A and B on 

the same diagram! What can we say about 

the simultaneous deviations of quantities? 

Uncertainty principle: there are physical 

quantity pairs which cannot be measured with 

arbitrary accuracy simultaneously. 

 

Statistical calculations without quantum formalism do not appear in the original secondary school curriculum, the 

uncertainty principle can be interpreted without the concept of standard deviations too. To this end the concept of 

“polarization property” has been defined in [1, 9], determined by a polarization measurement. A photon possesses a 

polarization property only if it has already passed through a polaroid with a certain direction or if we know for sure 

that it will pass through a polaroid with probability 100%. In this interpretation, the uncertainty principle states that 

there are incompatible physical property pairs, where “incompatible property pairs” means that only one of the two 

properties can be assigned to a state [1, 9, 27]. This interpretation is consistent with the former elementary statistical 

description because if a photon possesses a polarization property, the standard deviation of the physical quantity 

assigned to this property is zero. So incompatible properties refer to two quantities which cannot be accurate (cannot 

be precisely measured) simultaneously because their deviations cannot be zero simultaneously. 

PREPARING THE FORMALISM OF QM 

The school materials [5-9] introduces the quantum state as a real vector. It is this restriction because of which the 

formalism followed in the teaching material can be considered to represent only a model of QM. This setup encourages 

students to use vectors to represent the direction of polaroid, and afterwards the polarization state of photons. 

Consider two polaroids with permitted directions u and h like e.g. in Fig. 2. Every photon prepared by the first 

polaroid has a well-defined quantum state (u) corresponding to the polarization direction of the polaroid. Photons with 

state u that already passed through the first polaroid fall onto the second polaroid of polarization direction h. If they 

pass through the second polaroid, they acquire a new photonic state, namely h. Thus, we can assign vectors to the 

photons after and before the transmission and can normalize them to unit vectors. Students can see that Malus’ law 

appears as the square of the scalar product of these unit vectors: 

Pr = cos2 θ = ⟨h,u⟩2 = (hT ∙ u)2. 

The secondary school teaching materials do not use the scalar product as matrix multiplication (the vector transposition 

is avoided), but at university we did. We marked the scalar product as ⟨h,u⟩ = hT ∙ u and explicitly indicated 

transposition because of a possible later use of complex vector spaces where transpose will be replaced with adjoint. 
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After exploring that the probability of transmission is the square of a scalar product, the polarization process can 

be considered as a transition between states. The probability Pr of a transmission through the second polaroid is 

equivalent with the state transition u→h of photons, i.e Pr(u→h) = (hT ∙ u)2 = p where h is the state after the 

measurement and u is the state before the measurement. We can assign a state vector v to the a photon which is going 

to be absorbed after passing through a polaroid: Pr(u→v) = (vT ∙ u)2 = 1 – p where the unit vector v is perpendicular 

to h. So, if the incident photons are in state v, then the probability of passing through a polaroid with direction h is 

Pr(v→h) = 0, that is consistent with a phenomenologically known property: if we take two polaroids with 

perpendicular directions in a row, there is no transmitted light. 

The formal translation of the superposition principle is an immediate consequence of secondary school linear 

algebra: every vector can be represented as linear combinations of bases. In the case of polarization, the two bases can 

be the vectors assigned to transmission (h) and absorption (v) which we call eigenvectors; they point in the horizontal 

(h) and vertical (v), respectively. The state of an incident photon can be written as a linear combination of the 

eigenvectors: u = ψ1h + ψ2v, where ψi are the weights or coefficients of the eigenvectors. So, the measuring device 

determines the eigenvectors, and this special linear combination can be called the superposition principle. 

The coefficients ψ1 and ψ2 can be calculated as scalar products, just like in the general determination of the 

coefficients of eigenvectors in QM, namely ψi = ⟨ui,u⟩ where u represents the state of photon and ui denotes one of 

the eigenvectors. Due to the probabilistic interpretation of transitions, ψ
1
2 + ψ

2
2 = 1 holds in any two-state systems. It 

is worth mentioning that this calculation gives an opportunity to prepare students to realize that general states are 

superposition states, and the coefficient of eigenvectors should be determined with scalar products. Most of the 

students usually do not intend to take scalar products because the vectors are rarely unit vectors beyond the quantum 

world. Experience shows that students automatically calculate the coefficients by writing down a system of linear 

equations, in two-state system this implies only two equations. However, in infinite dimensional vector spaces (e.g., 

wave function) we cannot take infinitely many equations, so we have to calculate the coefficient with a different 

strategy. These evident examples provide opportunity to prepare the general formalism of QM. 

The next step is to notice that the polaroid operates as a projector, rotating the state u of incident photons into one 

of the eigenvectors h and v. The original teaching materials considers a polaroid of horizontal direction, and h and v 

denote horizontal and vertical states, respectively. It introduces the projectors with the formulas: 

Ph = hh ∙ 

Pv = vv ∙. 

These can be made acceptable in secondary schools by means of the following simple argument. The scalar product 

h ∙ u gives the length of the projection of vector u in the direction of h. The result of the operation Ph u = h ∙ (h ∙ u) 

is thus a vector parallel to h with the same length as the projection of u onto h due to the unit length of vectors. So, 

the projector Ph is an operation that projects vectors into the direction of h, creating a new vector. 

The secondary school curriculum [4-8] suggests that the operator of a polaroid (with horizontal direction) should 

be written as a linear combination of projectors: 

A = λ1Ph + λ2Pv. 

The horizontal and vertical polarization measurements are preferable in secondary schools because they agree with 

the axes the ordinary coordinate systems. 

At this point, the university level starts going beyond that of the secondary school material. Students faced with a 

more formal language (transpose of vectors and arbitrary orthogonal eigenvectors marked by a and c) and wrote the 

projectors as: 

Pa = aaT 

Pc = ccT, 

which are called dyadic products in linear algebra [28]. Thus, in general we can write the superposition with arbitrary 

eigenvectors (a and c) as: u = ψ1a + ψ2c. The eigenvectors are always determined by the measuring device. Writing 

the superposition with arbitrary eigenvectors was an extra part of the project, not included in the original secondary 

school level teaching materials. Furthermore, the operator of a measurement with an arbitrary polaroid can be given 

by rewriting the linear combination of the projectors by means of the dyads formed from a and c: 

A = λ1aaT + λ2ccT. 

This is the dyadic representation of a matrix in terms of its eigenvalues and eigenvectors, known for the students from 

their studies in linear algebra. 
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In the pilot project this illustrative way of writing the operator of a polaroid was further extended to representation 

of operators by means of real matrices. University students can explore that the operator of a polarization measurement 

is linear. They know from linear algebra that every linear transformation can be represented by a matrix. Matrices of 

polaroids multiply the length of non-zero eigenvectors by a scalar factor (λ1 = +1 and λ2 = 0), and general photonic 

states are projected into the eigenstates. Consequently, at the university we are able to create the matrices of 

polarisation measurements by assigning eigenvectors and eigenvalues to polaroids. 

Let us mark with symbol A the quantity assigned to a polarization measurement with a polaroid of polarization 

direction α to the horizontal. A polarization measurement sets the eigenvectors. Let a be the eigenvector corresponding 

to the transmission. It takes the form a = (
a1

a2
) = (

cos α

sin α
) in a horizontal-vertical frame. The other one, corresponding 

to absorption, is c = (
c1

c2
) = (

- sin α

cos α
). Thus, the matrix form of the operator A of a polarization measurement taken with 

a polaroid of polarization direction α is the following: 

A = λ1aaT + λ2ccT = +1 ∙ (
a1

a2
) ∙ (a1 , a2) + 0 ∙ ccT = (

a1
2 a1a2

a1a2 a2
2

) = (
cos2 α cos α sin α

cos α sin α sin
2

α
). 

To my knowledge, this form has not been used in the literature dealing with the teaching of the Dirac approach. Notice 

that the matrix form of the operator is symmetric. Via this example, students see that every symmetric matrix has real 

eigenvalues and orthogonal eigenvectors, therefore a matrix form of an operator of a physical quantity should be 

symmetric. In later studies students can generalize this with self-adjoint operators which are the analogues of 

symmetric matrices in complex vector spaces. 

Students can check that the eigenvalues of matrix A are 1 and 0, independent of α, but the corresponding 

eigenvectors a and c do depend on α. For an arbitrary state u = (
cos φ

sin 𝜑
) of a photon with polarization direction φ to 

the horizontal, and θ = φ − α relative to the direction of the polaroid, the state of photons can be represented as the 

superposition of eigenvectors. Students can evaluate the scalar product ψ1 = ⟨a,u⟩ = cos (φ – α) = cos θ which is indeed 

the length of a unit vector of direction φ projected onto the direction of α. Students thus see that the transmission 

probability Pr(u→a) = ⟨a,u⟩2 = ψ
1
2 and they can also check the validity of u = ψ1 a + ψ2 c via direct substitution of the 

constitutive terms. 

Continuing the argumentation, let introduce another matrix marked with symbol B assigned to another polaroid 

with polarization direction β to the horizontal. With eigenvector b = (
b1

b2
) = (

cos β

sin β
) corresponding to the transmission, 

the matrix is the following: 

B = (
b1

2
b1b2

b1b2 b2
2

). 

Then the commutator [A , B] = A ∙ B − B ∙ A is: 

 

[A , B] = (
0 (a1

2 - a2
2)b1b2 - (b1

2 - b2
2)a1a2

-(a1
2 - a2

2)b1b2 + (b1
2 - b2

2)a1a2 0
). 

 

Students thus see that the quantities A and B do not commute (if α ≠ β or |α − β| ≠ 90°). So the uncertainty principle is 

valid: these physical quantity pairs cannot be measured precisely simultaneously. This is the consequence of the fact 

that there are no common eigenvectors of the operators assigned to the physical quantities, thus one of the quantities 

always deviates from its expectation value which is a new view of the uncertainty principle via Dirac approach. 

We can also measure the polarization of photons with birefringent calcite crystals instead of polaroids. In this case 

the two possible outcomes correspond to different trajectories. The measurable values with calcites can be chosen to 

be the eigenvalues λ1 = +1 and λ2 = −1. All previous calculations are similar but lead to different matrices because the 

eigenvalues are different even if the eigenvectors are the same. In the particular case when the polarization direction 

is horizontal or 45° to the horizontal, the operators correspond to the real Pauli matrices. This choice is an 

advantageous one, as it fits to the Stern-Gerlach experiment. However, this article does not treat the cases of calcite 

crystals due to space limits, the literature [6-10] presents these, although without the matrix formalism. 

Now let consider the effect of an operator to an arbitrary state as articles [4-8] suggest. Assume that the incident 

photons are in state u, and calculate the effect of operator A (related to quantity A) on state u in a two-state problem: 

A u = (λ1aaT + λ2ccT) ∙ (ψ1a + ψ2c) = λ1ψ1a + λ2ψ2c. 
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If this expression is multiplied by uT from the left, we get the expectation value of quantity A in state u: 

uT A u = (ψ1aT + ψ2cT) ∙ (λ1ψ1a + λ2ψ2c) = λ1ψ1
2 + λ2ψ2

2  = λ1p1 + λ2p2 = ⟨A⟩u. 

The formula ⟨A⟩u = uT A u is suitable to calculate the expectation value of any physical quantity in state u. The 

expectation value of A2 is also calculable:  

 

⟨A2⟩u = uT A2 u = (ψ1aT + ψ2cT) A2(ψ1a + ψ2c) = (ψ1aT + ψ2cT) ∙ ( λ1
2
ψ1a + λ2

2
ψ2c) = λ1

2
ψ

1
2 + λ2

2
ψ

2
2  = λ1

2
p1 + λ2

2
p2. 

 

Note that we have obtained the general procedure for calculating the expectation values of a physical quantities in 

QM, which is the same as the result based on elementary statistics arguments presented earlier. In later studies, the 

generalization to arbitrary dimensions is much simpler. [5-9] 

The matrix representation was used to revisit earlier results, too. In the particular case of a measurement with a 

polaroid of direction 𝛼 to horizontal the students evaluated the expectation value by multiplying matrix A with the 

state vector u = (
cos φ

sin 𝜑
) from left and right: 

 

⟨A⟩ = (cos φ , sin φ) (
cos2 α cos α sin α

cos α sin α sin
2

α
) (

cos φ

sin 𝜑
) = (cos α cos φ + sin α sin φ)2 = cos2 θ. 

 

This provides a new interpretation of Malus’ law as the QM expectation value of measurements; thus the classical 

interpretation of Malus’s law appears as the average number of transmitted photons (for an enormous amount of 

photons). Similarly, students obtained the expectation value of A2 as cos2 θ with matrix multiplication. The standard 

deviation follows as: ΔA = 1/2 |sin 2θ| which is the same as the result of the elementary statistical calculations. 

Some students discovered that the above calculation of ⟨A⟩ is a bit complicated because vertical and horizontal 

bases were chosen, instead of the eigenvectors determined by the measuring instrument itself. The results appear in a 

much simpler form if we recall the diagonalization procedure of matrices, i.e. we choose the eigenvectors of the 

operator as the bases. In the coordinate frame of eigenvectors a and c, the matrix takes a form containing the 

eigenvalues in the diagonal: 

 

A = (
1 0

0 0
), 

 

and the state vector of the incident photon with polarization direction φ to the horizontal is just (
ψ

1

ψ
2
). This is because 

u = ψ1a + ψ2c according to the superposition principle. In this frame, the evaluation of the standard deviation is also 

much simpler as: 

 

⟨A⟩u =⟨A2⟩u = (ψ1 , ψ2) ∙ (
1 0

0 0
) ∙ (

ψ
1

ψ
2
) = ψ

1
2 = cos2 θ. 

 

This argument illustrates that physically relevant results do not depend on the choice of the reference frame. 

 

Finally, by continuing the exploration of QM, students can accept that the argument holds for any two-state system 

beyond the polarization. Table 3 summarizes how the Dirac approach has been adapted to teacher education. The 

second column presents the secondary school approach, while the third column uses the early university language. 

 

TABLE 3. Secondary school vs. early university level language. In this pilot project the language of mathematical 

expression is different from that of secondary schools because of the more advanced knowledge of university 

students. Innovations compared to the literature are highlighted in red. 

Topic 
Secondary school level of 

the Dirac approach 

Early university level of 

the Dirac approach 

 

Complex numbers, matrices and also 

the column vectors representation are 

avoided. 

Only real vectors and real matrices are 

used in a way tuned to the general 

formalism of QM. 

Scalar product v ∙ u ⟨v , u⟩ = vT ∙ u 
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TABLE 3. Secondary school vs. early university level language. In this pilot project the language of mathematical 

expression is different from that of secondary schools because of the more advanced knowledge of university 

students. Innovations compared to the literature are highlighted in red. (cont.) 

Topic 
Secondary school level of 

the Dirac approach 

Early university level of 

the Dirac approach 

Projector Pv = vv ∙ Pa = aaT 

Superposition 

u = ψ1h + ψ2v 

The bases are chosen to be the 

horizontal and vertical directions. 

u = ψ1a + ψ2c 

 

Arbitrary bases are chosen. 

Operator 

A = λ1 Ph + λ2 Pv 

The operators (polaroid of direction 

horizontal/vertical) as dyads avoiding 

the matrix representation. 

The eigenvalues are the possible 

measurable outcomes.] If the 

instrument is a polaroid, the choice of 

+1 and 0 is relevant. 

However, in the case of calcite crystals 

the choice ±1 is more suitable. 

A = λ1aaT+ λ2ccT = 

= (
λ1a1

2+λ2c1
2 λ1a1a2+λ2c1c2

λ1a1a2+λ2c1𝑐2 λ1a2
2+λ2c2

2
). 

The direction of polaroid is arbitrary. 

Eigenvectors and eigenvalues are 

determined by the measurement. 

This matrix is symmetric because its 

eigenvalues are real, so it represents a 

physical quantity. 

Diagonalization of matrices. 

Expectation 

value 
⟨A⟩u = p1 ∙ λ1 + p2 λ2 ⟨A⟩u = uT A u = λ1ψ1

2 + λ2ψ2
2  

Malus’ law 
Pr = cos2 θ. 

Pr = (u→v) = (v ∙ u)2  

Malus’ law is the expectation value of 

the measurement. 

Variance (ΔA)2 = ⟨A2⟩ − ⟨A⟩2 

Uncertainty 

principle 

There are incompatible physical 

properties. 

There are physical quantity pairs that 

cannot accurately be precisely 

measured simultaneously. So one of the 

quantities is uncertain. 

If the eigenvectors of the operators 

assigned to the physical quantities are 

not the same, then one of the quantities 

always deviates from its expectation 

value. 

The uncertainty principle holds when 

two operators of physical quantities do 

not commutate. 

 

Table 4 presents new tasks of the pilot project. In task 1 horizontally polarized photons fall on a polaroid with 30° 

polarization direction to horizontal. In task 2 the operator A of the measurement of polarization with the polaroid is 

known to be A = 1/2 (
1 1

1 1
). 

 

TABLE 4. New tasks in relation to the Dirac approach given to university students. 

Task Topic 

1/a) Determine the eigenvectors of the polaroid 

and write the photonic state as the 

superposition of eigenvectors! 

1/b) What is the probability of transmission and 

absorption using the superposition 

principle? Why is it necessary to write the 

state of photons as a superposition? 

Using the bases determined by the measurement. 

Determining coefficient of superposed states 

using scalar products. 

1/c) Express the operator of a polaroid as a 

dyadic expression! 

1/d) What is the matrix form of the operator? 

Operators of physical quantities using dyads. 

The physical and mathematical meaning of 

projectors and operators. 

Real symmetric matrices represent operators. 
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TABLE 4. New tasks in relation to the Dirac approach given to university students (cont.) 

Task Topic 

1/e) Calculate the expectation value and the 

standard deviation of physical quantity A 

corresponding to a polarization 

measurement with the polaroid by means 

of the general formalism of QM! 

Preparing the general formalism of QM. 

1/f) If B means a polarization measurement 

with a polaroid with 45° polarization 

direction to the horizontal, what is the 

standard deviation of B? 

1/g) Sketch the deviation of quantity A and B on 

the same diagram! What can we say about 

the simultaneous deviations of quantities? 

1/h) What is the commutator of A and B? 

The uncertainty principle: there are physical 

quantity pairs that cannot be arbitrary accurate 

simultaneously. 

One of the quantities is always uncertain, its 

standard deviation is nonzero. 

These quantities have no eigenvectors in 

common, these operators do not commute. 

1/i) Diagonalize the matrix form of operator! 
Diagonalization of matrices. The bases are 

arbitrary. 

2/a) What are the eigenvalues and eigenvectors 

of the operator? 

2/b) What is the physical meaning of the 

eigenvalues and eigenvectors in this 

example? 

2/c) What is the direction of the polaroid? 

Solving the eigenvalue equation in QM. 

The physical meaning of eigenvalue equations in 

QM. 

2/d) What is the deviation of measurements if 

the incident state of photons is uT = (1 , 0)? 
Preparing the general formalism of QM. 

CONCLUSIONS 

One of the purposes of this article is to show that the introduction of Dirac approach is efficient and useful at the 

university level: students become acquainted with simple examples illustrating the abstract formalism of QM, and as 

prospective teachers they can also acquire a teachable method of secondary school level QM. 

New tasks are formulated, the language of the teaching material is brought on a higher level of mathematics, and 

some proposals are made. The teaching material contains secondary school level elementary statistical calculations 

not yet published earlier, the real vector formalism extended by column vectors, transpose of vectors, and the 

representation of operators by symmetric matrices. The paper presents a possible interpretation of Malus’ law as the 

expectation value of polarization measurements. This article also shows a new approach to the uncertainty principle 

presenting it with simultaneous deviations of quantity pairs and also with commutators. Furthermore, the pilot project 

uses arbitrary bases and diagonalization of matrices which supplement the case of horizontal/vertical bases treated in 

the school material. In the future, integrating complex numbers and quantum entanglement into the teaching material 

for students can be the next step. Perhaps these innovations will not only help prospective teachers to learn the 

formalism and foundations of QM, but also contribute to the methodology of teaching and the cultural knowledge of 

the QM way of thinking. 

The students started the semester by refreshing the knowledge of statistic, linear algebra and exploring some of 

the laws of QM through the Dirac approach. At the end of the pilot project, students wrote a test related to the subject 

of this paper. The results were remarkably promising, students enjoyed the project. After the pilot project, students 

continued the quantum seminar with higher dimensional systems, and then the wave formalism was introduced by 

infinite dimensional vectors and matrices. As a result of the project, the next part of the semester was found easier by 

the students because they understood the concepts, foundations, and formalism through simple examples earlier. In 

particular, the interpretation of the energy spectrum and eigenfunctions of the Schrödinger equation was easier to 

understand after the two-state approach. I had the opportunity to point out that the coefficients ψ1 and ψ2 can be 

considered as a preimage of energy eigenfunctions ψ(x), since high dimensional vectors can approximate continues 

functions very well. The project also provided new pedagogical skills and different approaches of phenomena. The 

pilot project has proved to be encouraging for a continuation in the future. 
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